
Tangibles + Programming + Audio Stories = Fun
Varsha Koushik and Shaun K. Kane

Department of Computer Science
University of Colorado Boulder

Boulder, CO 80309 USA

{varsha.koushik, shaun.kane}@colorado.edu

ABSTRACT
Block-based programming languages enable novice programmers,

including children, to learn the basics of programming. However,

most block-based programming languages are not accessible to

blind and visually impaired users because they rely upon visual

drag-and-drop interaction, and because they typically create visual

output. To improve access to block-based programming languages,

we introduce Story Blocks, a programming toolkit that uses

tangible blocks to represent story components, and which produces

output in the form of accessible audio stories and games. Story

Blocks provides an introductory programming environment that

can be enjoyed by people of all abilities.

Keywords
Accessibility; Programming; Tangible Computing

1. INTRODUCTION
Block-based programming languages, such as Scratch and Blockly,

provide novice programmers with support in learning programming

languages. In particular, creating programs by combining blocks

can show a novice how a program is structured, and can allow a

novice to see whether a program is correctly assembled. Block-

based programming languages often support the creation of simple

animations and games so that young programmers can quickly

create engaging content [2].

While block-based programming languages offer many benefits for

novice programmers, most block-based languages are not

accessible to blind and visually impaired users. This inaccessibility

is caused primarily by two issues. First, block-based languages are

programmed using drag-and-drop interactions on a graphical user

interface, and these user interfaces are not easily translated for

screen reader users. Second, the output of block-based languages

often takes the form of graphic animation or games that are not

accessible (and therefore not engaging) to blind learners.

To explore alternative input and output modes for block-based

programming, we introduce the Story Blocks programming

environment (Figure 1). In Story Blocks, users create programs by

assembling physical blocks that represent characters and actions

within an interactive story. The user can then scan this program

using a mobile device camera. The program is executed as an audio

story on the mobile device. Thus, Story Blocks provides both

accessible tools for creating programs as well as universally

accessible output. Creating more accessible programming tools

may support children of all abilities in exploring computer science.

2. RELATED WORK
Several programming languages have been designed to support

accessibility for blind and visually impaired users. Quorum [11] is

a text-based programming language that provides explicit support

for programming via a screen reader. Other researchers have

explored ways to provide access to block-based languages by

adding audio. Ludi [8] proposed extending the block-based

language Blockly to provide access for screen readers.

PseudoBlocks [7] is a nonvisual pseudo-spatial programming

language that allows users to manipulate blocks using keyboard

commands, and provides program output via speech. Blocks4All

[9] allows users to explore a block-based program by touching a

touch screen and receiving speech feedback. Story Blocks provides

non-visual access to block-based code, but uses tangible input in

addition to audio feedback.

Tangible programming tools also offer the potential to increase

access to block-based programming. Strawbies [4] enables children

to control an on-screen character by assembling a series of

instruction blocks; blocks are scanned by a mobile device camera

and are used to direct an on-screen character. Project Bloks [1]

supports block-based programming by assembling a series of

blocks with embedded sensors and actuators. However, these

systems use blocks that are only identifiable visually. In this work,

we are exploring how the tangible design of blocks can be used to

create programs that are readable by a blind or visually impaired

user. Project Torino [12] adopts a similar approach to Project

Block, but is specifically designed to support both blind and sighted

children. Users can assemble programs in Project Torino by

connecting blocks with a cable, and can create programs that output

music or spoken audio. However, Project Torino requires

sophisticated hardware devices for each block, and thus may not

scale well to large numbers of learners, such as in a large classroom.

Story Blocks builds upon these tangible programming tools, but

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for third-party

components of this work must be honored. For all other uses, contact the

Owner/Author.

ASSETS '17, October 29-November 1, 2017, Baltimore, MD, USA
© 2017 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-4926-0/17/10.

https://doi.org/10.1145/3132525.3134769

Figure 1. The Story Blocks programming language uses

tangible blocks as the basis for programs. These blocks offer

tactile features that allow them to be used by both blind and

sighted users. The user assembles a program by connecting

blocks, and captures an image of the program on a mobile

device. The program is then executed on the phone in the form

of an interactive audio story.

Poster Session 1 ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

341

https://doi.org/10.1145/3132525.3134769
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3132525.3134769&domain=pdf&date_stamp=2017-10-19

focuses on the design of low-cost tangible blocks that can be used

to create expressive audio output.

Enabling novice programmers to create stories and games can be

effective in encouraging programming practice, especially for

younger learners. Alice [3] and Storytelling Alice [6] are block-

based programming tools that enable novice programmers to write

programs that control on-screen characters. Story Blocks explores

programming of audio stories and simple games as a way to provide

compelling non-visual output for novice programmers.

3. STORY BLOCKS
Our ongoing work in the Story Blocks project is motivated by the

following goals. First, we wish to provide tangible access to block-

based programming languages that can be used by both blind and

sighted users. Second, we wish to enable the creation of compelling

non-visual programs for novice programmers. Finally, we wish to

support scalability of the system, enabling multiple students in a

classroom to create programs simultaneously. These goals have

been embodied in the current Story Blocks prototype.

3.1 System Design
The Story Block programming language consists of a series of

physical blocks that can be joined together to create a program

(Figure 1). In the current prototype, these blocks are made from

low-cost materials and fabricated using a 3D printer or laser cutter.

Each block is designed to be identifiable by its shape and color so

that blocks can be identified by both blind and sighted users. As in

other block-based programming languages, the shape of each block

indicates how it may connect to other blocks. Blocks are marked

with a distinctive dot pattern, such as a reacTivision tag [5], so that

they may be tracked by the system.

The current prototype supports three types of blocks: character

blocks, which represent characters in the story such as the Cat,

Mouse, and Princess; action blocks, which represent actions taken

by the characters, such as talking, eating, and running; and control

blocks, which support conditional branching, looping, and other

aspects of program flow. Figure 1 shows a simple Story Blocks

program in which a cat encounters a mouse.

The blocks used in this system are constructed from passive

materials such as cardboard, wood, or plastic. Execution of the

program is controlled by a companion application running on a PC

or mobile device. A user can compile their program by capturing a

photo of the blocks. Once the program is loaded into the

application, the user can execute the story using standard screen

reader commands. For each line of code, the companion application

will read the next part of the story. The companion application can

embellish each line by adjusting the text-to-speech voice to

represent different characters, and by adding atmospheric music

and sound effects. While the current prototype only supports static

stories, future versions of Story Blocks will support the creation of

interactive stories and audio games.

4. CURRENT PROGRESS
Our current prototype supports the creation of simple stories with a

limited number of characters. We intend to extend the current

system by adding additional characters and actions, and by

providing additional support for playing atmospheric sound and

music. We are also investigating alternative designs for the blocks

themselves, exploring tradeoffs between different block sizes,

materials, and tracking methods.

We are also beginning a study of how K-12 students and teachers

use Story Blocks. In particular, we hope to gather feedback about

the current prototype and to explore how students and teachers may

integrate Story Blocks into their current activities.

5. CONCLUSION
While block-based programming languages offer many

opportunities for novice programmers, many of the features of

these languages remain inaccessible. By combining tangible input

with engaging audio output, Story Blocks may offer a compelling

approach to introducing programming concepts to students with a

variety of abilities.

6. ACKNOWLEDGMENTS
We thank Clayton Lewis, Mike Horn, Erin Buehler, Lauren Milne,

and Richard Ladner for their feedback on this work.

7. REFERENCES
[1] Blikstein, P., Sipitakiat, A., Goldstein, J., Wilbert, J., Johnson,

M., Vranakis, S., Pedersen, Z. and Carey, W. (2016). Project

Bloks: designing a development platform for tangible

programming for children.

[2] Brennan, K., and Resnick, M. (2012). New frameworks for

studying and assessing the development of computational

thinking. In Proc. AERA ’12, 1-25.

[3] Cooper, S., Dann, W., and Pausch, R. (2000). Alice: a 3-D tool

for introductory programming concepts. In Journal of

Computing Sciences in Colleges 15, 5, pp. 107-116.

[4] Hu, F., Zekelman, A., Horn, M., and Judd, F. (2015).

Strawbies: explorations in tangible programming. In Proc.

IDC ’15, 410-413.

[5] Jordà, S., Geiger, G., Alonso, M., and Kaltenbrunner, M.

(2007). The reacTable: exploring the synergy between live

music performance and tabletop tangible interfaces. In Proc.

TEI ’07, 139-146.

[6] Kelleher, C., Pausch, R., and Kiesler, S. (2007). Storytelling

Alice motivates middle school girls to learn computer

programming. In Proc. CHI ’07, 1455-1464.

[7] Koushik, V., and Lewis, C. (2016). An accessible blocks

language: work in progress. In Proc. ASSETS ’16, 317-318.

[8] Ludi, S. (2015). Position paper: Towards making block-based

programming accessible to blind users. IEEE Blocks and

Beyond Workshop, 67-69.

[9] Milne, L. R. (2017). Blocks4All: making block programming

languages accessible for blind children. ACM SIGACCESS

Accessibility and Computing 117, pp. 26-29.

[10] Schanzer, E., Fisler, K., Krishnamurthi, S., and Felleisen, M.

(2015). Transferring skills at solving word problems from

computing to algebra through Bootstrap. In Proc. SIGCSE

’15, 616-621.

[11] Stefik, A., and Siebert, S. (2013). An empirical investigation

into programming language syntax. ACM Transactions on

Computing Education 13(4), Article 19, 40 pages.

[12] Thieme, A., Morrison, C., Villar, N., Grayson, M., and

Lindley, S. (2017). Enabling collaboration in learning

computer programing inclusive of children with vision

impairments. In Proc. DIS ’17, 739-752.

Poster Session 1 ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

342

	ABSTRACT
	Keywords Accessibility; Programming; Tangible Computing
	1. INTRODUCTION
	2. RELATED WORK
	3. STORY BLOCKS
	3.1 System Design

	4. CURRENT PROGRESS
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

