
An Accessible Blocks Language: Work in Progress
Varsha Koushik and Clayton Lewis

Department of Computer Science
University of Colorado, Boulder Colorado USA

vasr6678@colorado.edu, clayton.lewis@colorado.edu

ABSTRACT
Block languages are extensively used to introduce programming

to children. They replace the complex and error prone syntax of

textual languages with simple shape cues that show how program

elements can be combined. In their present form, blind learners

cannot use them, because they rely on graphical presentation of

code, and mouse interactions. We are working on a nonvisual

blocks language called Pseudospatial Blocks (PB), that supports

program creation using keyboard commands with synthetic

speech output. It replaces visual shape cues for language syntax,

the key feature of block languages, with filtering of program

elements by syntactic category.

CCS Concepts

• Human-centered computing~Accessibility systems and

tools • Human-centered computing~Auditory

feedback • Software and its engineering~Visual languages

Keywords

Accessible Interfaces; Barriers to programming; Learning to

program

1. VISUAL PROGRAMMING

ENVIROMENTS ARE INACCCESSIBLE

TO BLIND USERS
Block languages like Scratch, Snap, MIT App Inventor, Microsoft

Block Editor for BBC, and many more are among the most

popular platforms for introducing children to the world of

programming. Program elements are presented as blocks, which

have tabs and sockets that show how they can be fit together, so

that learners don’t have to master the complex syntax of textual

languages. However, non-sighted users cannot see these shape

cues (nor can they perform the drag and drop mouse interactions

used to assemble the blocks.)

A number of researchers have responded to the need to offer the

potential conceptual benefits of block languages in a form

accessible to blind learners. A team at Google is creating

Accessible Blockly, (https://blockly-

demo.appspot.com/static/demos/accessible /index.html), a system

that presents blocks and blocks programs as HTML structures that

can be read by a screen reader, a tool with which many blind users

are already familiar. Stephanie Ludi [4] has proposed a related

approach, also based on Blockly, which will also support visual

access, an advantage in many learning situations where blind and

sighted learners work together. The Bootstrap system

(http://www.bootstrapworld.org/) is being extended to support a

blocks language made accessible by a screen reader (Emmanuel

Schanzer, personal communication, July 15, 2016). Richard

Ladner (personal communication, June 1, 2016) has proposed

using a touchscreen to permit learners to explore and operate on

blocks by touch. Like Ludi’s work, these approaches may allow

the same system to be used by blind and sighted learners. There

are also projects aimed at coding with tangible, physical blocks;

see e.g. http://cubescoding.com/, https://www.primotoys.com/,

and https://projectbloks.withgoogle.com.

2. PSEUDOSPATIALITY – BEYOND THE

SCREEN READER
Our approach to creating an accessible blocks language is based

on the ideas of T.V. Raman, who suggests that many visual tasks

can be replaced by nonvisual ones ([6], [7]; see also [2].) In

Raman’s thinking, one should create nonvisual presentations of

content that work well in themselves, rather than seeking to make

visual representations accessible, as a screen reader does.

Screen reader navigation is serial and hierarchical. Commands are

provided to read all material, or to read only elements at a given

level, or to skip to elements of a specified type, which provides

some flexibility, but the underlying structure is still constrained.

Some designers of applications for blind users have moved

outside this structure to support navigation in a virtual two

dimensional space, with operations provided that move right to

left or up and down (for example, the TWBlue Twitter client,

http://twblue.es/).

A navigation scheme can be pseudospatial, rather than simply

spatial, if the geometry of movement is distorted. We describe

here Pseudospatial Blocks (PB), a blocks language presentation

based on arrow key navigation. In PB a toolbox of blocks is to the

“left” of a workspace. The blocks in both areas, and parts within

blocks, are arranged “vertically”. The arrangement is

pseudospatial in that a step “left” from a block in the workspace

will reach the same location in the toolbox, regardless of the

“vertical” position of the block in the workspace, and there are

other distortions of actual space. Lewis [3] presented work on a

nonvisual dataflow language with a similar liberal use of two-

dimensional space.

Schiff and colleagues (see e.g. [9]) have shown that people

navigating virtual environments have no greater difficulty

learning environments that are distorted or impossible

geometrically or even topologically than realistic ones (in a

topologically impossible environment one can move from the

outside to the inside of a closed contour without crossing the

contour, for example.) We conjecture that distortions in the

geometry of PB will not be an issue.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
ASSETS '16, October 23-26, 2016, Reno, NV, USA

ACM 978-1-4503-4124-0/16/10.

http://dx.doi.org/10.1145/2982142.2982150

317

mailto:vasr6678@colorado.edu
mailto:clayton.lewis@colorado.edu
http://www.bootstrapworld.org/
http://cubescoding.com/
https://www.primotoys.com/
https://projectbloks.withgoogle.com/
http://twblue.es/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2982142.2982150&domain=pdf&date_stamp=2016-10-23

3. SHAPE CONSTRAINTS IN PB
As mentioned earlier, the distinctive feature of blocks languages is

the use of block shape to indicate how blocks can legally be

assembled. For example, a block representing a statement has a

different shape from a block representing an expression.

Statement blocks can fit together to make sequences of

statements, but expression blocks cannot; similarly, expression

blocks can fit into holes representing the inputs to operations,

while statement blocks cannot fit there. How can these constraints

on block placement be handled in a system with no visual

presentation?

In PB, one constructs a program by selecting an insertion point,

where a new block is to be placed. The system then prompts the

user to select the desired block from a list of candidates, in the

toolbox of available blocks. But the list of candidates is filtered,

so that only legal candidates can be selected. For example, in the

situations just compared above, if one selects an insertion point in

a sequence of statements, only statement blocks are presented as

candidates, while selecting an insertion point where an expression

is legal gives only expression blocks as candidates.

Arguably, this selection scheme has advantages over shape-based

constraints, in two ways. First, shapes have difficulty indicating

when two or more different kinds of blocks can be used. For

example, in Scratch, blocks that represent numeric quantities are

shown as rounded shapes, and character strings are rectangles. But

a rounded shape can legally be placed in a rectangular hole, even

though it does not “fit”. The numeric quantity is converted to a

string, in such a situation, but there is no visual cue that this will

happen until it is tried. Using filtered selection, this is no problem:

all legal blocks are offered as candidates.

A second issue with shapes is that each kind of block that has

distinctive fit constraints has to have a distinctive shape. But it

seems that only so many shapes are workable, so some

distinctions among blocks may go unmarked. For example, in the

demo language at https://blockly-

demo.appspot.com/static/demos/code/index.html, list blocks and

number blocks have the same shape, but some list operations

cannot be applied to numbers, and so number blocks will not

always fit where their shape suggests. Distinctive colors are used

for list and number blocks, which helps, but only for sighted

users.

This situation is unproblematic for filtered selection. For example,

PB has blocks representing sounds and numbers; in many

situations only one or the other can be inserted, and the filtered

selection process offers only legal candidates.

4. IMPLEMENTATION AND STATUS
The implementation of PB is based on the Blockly library

(https://developers.google.com/blockly/; [1]), an extremely

flexible and widely used platform for creating blocks languages.

Blockly supports an XML representation of blocks programs, and

can generate code for these in a number of languages. This

support makes it easy to create new interfaces like Accessible

Blockly or PB. PB is implemented as a Web application that

builds a JSON (JavaScript Object Notation) representation of

programs, converts this to XML, and then uses Blockly to

generate JavaScript code. PB communicates with users via

synthetic speech; it will also be possible support screen reader

users by using an ARIA active region to generate responses via

the screen reader.

4.1 Status of PB
PB supports a small number of statement types, for arithmetic,

control structure, and sound. Sounds and operations on them are

supported by two kinds of blocks. First there are sound statement

blocks that simply play fixed, associated sounds. As statements,

these blocks can be formed into sequences to play desired

melodies. Second, there are sound expression blocks, that

represent sounds (as lists of samples) but do not play them; they

are played by providing them as input to a “play sound” statement

block. Sound expression blocks support generating musical notes,

attenuating or amplifying a sound (by multiplying the samples by

a given number), concatenating two sounds, or mixing them, that

is, playing the sounds simultaneously. As discussed earlier, the

filtered selection mechanism enforces that (for example) only

sounds and not numbers can be mixed. We believe PB is nearing

readiness for user testing, which is obviously crucial. We expect

many changes to be driven by user input.

5. ACKNOWLEDGMENTS
We thank Sina Bahram for telling us about TWBlue, and for

suggestions for structuring pseudospatial interfaces; Richard

Ladner for sharing his proposal for tactile support for blocks

languages; Neil Fraser and Madeeha Ghori of Google for their

help in our use of Blockly, and for sharing their work on

Accessible Blockly; Ben Shapiro and Annie Kelly for advice on

platforms; and Andy Stefik and Brian Harvey for convening a

workshop on accessibility of block languages at MIT in April,

2015, that provided the inspiration for our work.

6. REFERENCES
[1] Fraser, N. (2015). Ten things we’ve learnt from Blockly. In

Blocks and Beyond Workshop (Blocks and Beyond), 2015

IEEE (pp. 49-50). IEEE.

[2] Lewis, C. (2013). Pushing the Raman Principle. In

Proceedings of the 10th International Cross-Disciplinary

Conference on Web Accessibility (W4A’13). ACM, New

York, NY, USA, Article 18, 4 pages.

[3] Lewis, C. (2014). Work in Progress Report: Nonvisual

Visual Programing. In B. duBoulay and J.Good (Eds) Proc.

PPIG 2014 Psychology of Programming Annual Conference,

25th Anniversary Event. Brighton, England, 25th-27th June

2014.

[4] Ludi, S. (2015). Position paper: Towards making block-

based programming accessible to blind users. Blocks and

Beyond Workshop (Blocks and Beyond), 2015 IEEE, Atlanta,

GA, pp 67-69

[5] Maloney, J., Resnick, M., Rusk, N., Silverman, B., &

Eastmond, E. (2010). The scratch programming language

and environment. ACM Transactions on Computing

Education (TOCE), 10(4), 16.

[6] Raman, T.V. (1996) Emacsspeak—A speech interface. In

Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems (CHI’96), Michael J. Tauber (Ed.).

ACM, New York, NY, USA, 66-71.

[7] Raman, T.V. and Gries, D. (1997.) Documents mean more

than just paper! Mathematical and Computer Modelling,

Volume 26, Issue 1, July, 45-53.

[8] Zetzsche, C., Wolter, J., Galbraith, C., & Schill, K. (2009).

Representation of space: image-like or

sensorimotor?. Spatial Vision, 22(5), 409-424.

318

https://blockly-demo.appspot.com/static/demos/code/index.html
https://blockly-demo.appspot.com/static/demos/code/index.html
https://developers.google.com/blockly/

