
StoryBlocks: A Tangible Programming Game to
Create Accessible Audio Stories

Varsha Koushik, Darren Guinness, and Shaun K. Kane
 Department of Computer Science
 University of Colorado Boulder

Boulder, CO, USA
 {varsha.koushik, darren.guinness, shaun.kane}@colorado.edu

ABSTRACT

Block-based programming languages can support novice
programmers through features such as simplified code
syntax and user-friendly libraries. However, most block-
based programming languages are highly visual, which
makes them inaccessible to blind and visually impaired
students. To address the inaccessibility of block-based
languages, we introduce StoryBlocks, a tangible block-
based game that enables blind programmers to learn basic
programming concepts by creating audio stories. In this
paper, we document the design of StoryBlocks and report
on a series of design activities with groups of teachers,
Braille experts, and students. Participants in our design
sessions worked together to create accessible stories, and
their feedback offers insights for the future development
of accessible, tangible programming tools.

CCS CONCEPTS
• Human-centered computing → Accessibility → Accessibility
technologies;

KEYWORDS
Computer science education; tangible user interfaces; audio
interfaces; storytelling; cross-ability collaboration.

ACM Reference format:
Varsha Koushik, Darren Guinness, and Shaun K. Kane. 2019.
StoryBlocks: A Tangible Programming Game to Create Accessible Audio
Stories. In 2019 CHI Conference on Human Factors in Computing Systems
Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland, UK. ACM, NY,
NY, USA. Paper492, 12 pages. https://doi.org/10.1145/3290605.3300722

1 INTRODUCTION

Computer science is increasingly becoming a part of
mainstream K-12 education. Learning how to create
computer programs can empower students to pursue work
in computer science and other STEM fields. Even for
students who do not go on to pursue computing careers,
learning computer science and can support computational
thinking, which itself can be applied to many different
domains [34]. However, computer science students may
encounter a variety of barriers in their studies. As a result,
computer science educational programs often suffer a
high attrition rate [4] and may disproportionately drive
out women and other marginalized students [15].

Students with disabilities may experience many barriers in
learning computer science due to inaccessible
programming tools, unprepared teachers, and other
concerns [27]. Supporting students with disabilities in
computing careers is crucial, not only to support equal
access to education and work, but because developing
computational skills can help empower people to use,
adapt, and create assistive technologies [27]. A key
challenge is enabling students to work collaboratively

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org).
CHI 2019, May 4-9, 2019, Glasgow, Scotland, UK.
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5970-2/19/05...$15.00.
DOI: https://doi.org/10.1145/3290605.3300722

Figure 1. StoryBlocks is a tangible programming game in
which users create audio stories by combining code
blocks. Here a visually impaired high school student
creates a story with assistance from teachers.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 1

https://doi.org/10.1145/3290605.3300722
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3290605.3300722&domain=pdf&date_stamp=2019-05-02

with teachers and other students; while group activities
can encourage some students to learn computer science
[40], people with disabilities who use assistive
technologies often encounter barriers when using their
assistive technology during collaborative activities [7]. A
second challenge is to make block-based programming
languages accessible to all students [34]. While block-
based programs offer advantages to novice programmers,
they generally are not accessible to students with vision
impairments [30].

To address the challenge of creating an accessible and
educational programming environment, we introduce
StoryBlocks (Figure 1), a programming game that uses
tangible blocks to represent code. These blocks can be
assembled to program simple audio games and stories. In
this paper, we describe the design and development of
StoryBlocks, the design of the tangible blocks and
workspace, and format of the audio story output. To
gather feedback about our prototype, we conducted six
design sessions with blind and visually impaired students,
teachers of the visually impaired (TVIs), Braille experts,
and other educational staff. The contributions of this
paper include documentation of the StoryBlocks
prototype, user feedback from our design sessions, and
example stories created by our design teams.

2 RELATED WORK

This work draws from best practices in designing
accessible technology for blind and visually impaired
people [31], as well as research on designing accessible
programming environments, block-based languages,
tangible computing environments, and storytelling-based
programming tools.

2.1 Accessible Programming Environments

Blind and visually impaired programmers face many
challenges while programming, including navigating code
structure, identifying bugs in code, and performing visual
tasks such as graphical user interface development [1]. For
expert coders, tools such as Emacspeak [33] and
StructJumper [2] use audio cues and navigation shortcuts
to make it easier to read and navigate through code.
However, these tools address the needs of expert
programmers, and are not suited to novices.

Other approaches to making coding accessible include
programming languages that are optimized for both blind
and sighted coders. Quorum [38] is a text-based
programming language that enables programmers to
create complex graphical applications, video and audio

games, and other programs. Quorum is increasingly used
to support accessibility in K-12 computer science
education [28]. APL [36] is an audio programming
language that allows blind and visually impaired
programmers to create simple games and applications that
use recorded sounds and text-to-speech. These tools
provide accessible entry points to computer science but
require learners to be skilled users of computer software
and any necessary assistive technologies, which may leave
out some children.

Researchers and educators have developed curricula that
support blind and visually impaired children in learning
mainstream programming languages, often paired with
some application library, such as teaching Java through
programming robots [29], chat bots [5], 3D printing [21],
and audio games [22]. These tools have the benefit of
supporting mainstream programming languages, but may
carry the complexities of these languages, which can
present challenges for novice learners. Our present work
focuses on providing a simplified introduction to
programming for blind and visually impaired learners.

2.2 Block-Based Programming Languages

Block-based programming languages such as Scratch [34]
have become popular means for introducing children to
computer science, due in part to beginner-friendly
features such as visual code blocks that suggest proper
syntax, the ability to easily create games, animations, and
other visual media, and the ability to easily share and
remix programs online. While Scratch is perhaps the most
popular block-based language, with millions of users1,
many other programming environments, such as Blockly2
and code.org [23], also use blocks. Blockly, an open source
library, has been used to create a variety of block-based
programming tools, such as BlockyTalky [14], which
allows children to program networked mobile devices and
musical instruments; ArduBlockly3, which enables block-
based programming of microcontrollers; and OzoBlockly4,
which enables children to control robots with block-based
programs. Unfortunately, neither Scratch nor Blockly are
accessible to screen reader users, and both rely heavily on
visual presentation for both creating code and observing
its output. StoryBlocks offers an alternative approach to

1 scratch.mit.edu/statistics
2 developers.google.com/blockly
3 github.com/carlosperate/ardublockly
4 ozoblockly.com
4 algobrix.com
5 playosmo.com

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 2

block-based programming that provides equal access to
blind and sighted learners.

Some block-based programming environments have
begun to address accessibility issues [30]. PseudoBlocks
[26] enables blind programmers to navigate block-based
programs via keyboard input and speech output.
Blocks4All [32] enables blind users to explore block-based
programs by touching a touch screen and receiving audio
feedback. Project Torino [39] is an accessible
programming environment that uses custom hardware
“blocks” that can be connected together via cables to
create audio-based programs. Like Torino, StoryBlocks
uses physical components to create programs; however,
StoryBlocks uses low-cost components and computer
vision rather than custom electronics. StoryBlocks also
focuses on audio stories as an output format. We consider
these to be complementary approaches to a similar
problem.

2.3 Tangible Programming Toolkits

In addition to supporting accessibility, tangible
programming tools may help learners engage with
computing concepts and may support collaborative
programming [16]. Many current tangible programming
toolkits support physical computing projects, as in
roBlocks [35], littleBits [3], Project Bloks [6] and
Algobrix4. These toolkits have physical blocks that may

sometimes be accessible to blind and visually impaired

learners, but they are rarely designed with accessibility

in mind.

Other tangible programming toolkits, such as Tern [15],
Strawbies [18], and Osmo5, have focused on creating
programming-like games in which learners compose
programs by assembling a list of instructions, which then
control an on-screen character or simulation. These
systems are usually comprised of passive blocks, made of
wood or cardboard, with visual tags on each block. A
computer’s camera reads the series of blocks and executes
the program. Often the shape of the block itself
demonstrates its function, such as by having an if-block
that demonstrates a branching “Y” shape. While these
toolkits feature tangible blocks that might be
understandable to a blind learner, they typically create on-
screen programs that are inaccessible. StoryBlocks follows
a similar approach of using tangible blocks as input, but it
has been designed such that both creating and playing
back programs is accessible.

2.4 Storytelling in Computer Science Education

A significant challenge in designing accessible
programming tools is creating program output that can be
accessible and interesting to blind learners. In
StoryBlocks, we use audio stories as an output format that
can be accessible to both blind and sighted users and could
even be easily translated into text for deaf learners and
others.

Using stories as program output has been employed
previously, as many stories can be described as a series of
objects and actions that correspond to program code.
Strawbies [18] and Alice [25] enable programmers to
control on-screen characters through code. Ryokai et al.
[35] developed a robotic programming environment in
which children created interactive stories by specifying a
robot character’s behaviors. Storytelling Alice [25] and
Looking Glass [24] enable novice programmers to control
3D characters in their code and to create stories that can
be played back or saved as a movie. These systems have
largely focused on creating visual stories, while
StoryBlocks explores how to create engaging and fun
audio stories through code.

2.5 Design Methods for Accessible User Interfaces

Designing technology for and with people with vision
impairments presents its own set of challenges, as
activities such as sketching and storyboarding must be
supplemented with a more accessible alternative.
Participatory workshops are often used as a way to
explore the design non-visual and tangible systems [9, 39,
41]. We created a physical StoryBlocks prototype as a
foundation for a series of collaborative design workshops.

Another common approach is to include other
stakeholders in the research activity, such as friends and
family members, who may have a unique insight into the
accessibility barriers encountered by an individual [7, 42].
We conducted our formative evaluation of StoryBlocks
with selected groups of students, teachers, and assistive
technology specialists.

3 STORYBLOCKS

To explore the design space of tangible programming
tools for blind children, we developed the StoryBlocks
prototype, which involved building the system software,
designing the tactile blocks, and creating demonstration
characters and voices for users’ programs.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 3

3.1 System Overview

The StoryBlocks system comprises a set of tangible blocks,
an augmented workspace, and software for interpreting
and playing back users’ story programs.

Tangible Blocks. Each block represents one component of
an interactive story, including characters, actions, and
program control statements. Each block features a tactile
symbol and a visual tag. Blocks do not contain any
electronics, enabling them to be easily fabricated and
modified. Each block is approximately 3.5 × 1 inch in size.

Workspace. Programs are created in a designated
workspace area. The workspace is 24 x 24 inches in size.
Tactile borders indicate the boundaries of the workspace.
The prototype workspace is constructed from 1-inch PVC
pipe (Figure 1). Images are captured by an overhead
webcam (currently a Logitech C615), connected to a
laptop.

Software. StoryBlocks programs are interpreted by a
custom Python program on a nearby laptop. Visual tags
are recognized using the reacTIVision library [20]. The
user scans a program by pressing a key on the laptop’s
keyboard; the program tags are read, the program is
parsed, and the laptop produces audio output that
corresponds to the user’s code.

3.2 Design of Tactile Features

StoryBlocks uses tangible blocks to represent programs.
Because StoryBlocks may be used by blind learners, it was
important that the tactile design of the blocks represent
their function as clearly as possible. The initial set of
blocks used in our prototype is shown in Figure 2.

In designing the tangible blocks, we followed the
following design criteria, derived from prior work in
designing laser-cut and 3D-printed tactile graphics
[9,12,13,25]:

Communicate Type and Allowable Connections. The
physical design of each block needs to communicate its
overall type (e.g., character, action, or command), and
which blocks can be connected to other blocks. In
StoryBlocks, the shape of the program block
communicates the block’s type—character blocks have
square edges, actions have rounded edges, and control
blocks have diamond-shaped edges—and the design of the
notches and tabs along the edge of each block
communicates valid connections between blocks (Figure
3). For blocks that connect directly to other blocks,
specifically the if-else blocks, we use a physical string to
indicate the connection between the original block and the
two end points.

Figure 3. Blocks represent the phrase “The mouse eats
cheese.” The tabs at the top and bottom indicate that more
lines of code may be added to the program.

Communicate Block Identity by Touch. Blocks should be
differentiable using tactile information only, and without
the need for Braille labels, as not all blind children can
read Braille and because this toolkit should also be usable
by sighted collaborators. A user should be able to quickly
identify a block in their hand, find a specific block from
within a pile of unsorted blocks, and count how many of
each block are available. In StoryBlocks, each block
features a tactile symbol with a distinctive shape. For
example, the cat character features pointy ears, while the
mouse character features round ears.

Our initial set of tactile symbols was based on the open
source EmojiOne5 characters. We chose a set of symbols
with distinct shapes, flattened their images to a single
color, and removed some unnecessary visual features,
such as the holes in the cheese symbol. This approach
enabled us to quickly create distinct tactile symbols and
enables us to easily add more symbols in the future.

Use Widely Available Materials. While including
electronics inside blocks can enable rich interactions, as in
Torino [39], we designed the components of StoryBlocks
to be inexpensive and easy to fabricate [17]. The current
prototype uses blocks that were laser cut and hand
painted, although they could also be hand-cut from wood
or cardboard. A full set of blocks can be produced on a
laser cutter in about 15 minutes and requires about US$30

5 www.emojione.com/emoji/v2

Figure 2. Blocks used in the initial StoryBlocks prototype
include characters (mouse, turtle, cat, snake, cheese),
actions (explode, talk, run, dance, eat), and control
structures (repeat, branch).

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 4

in materials. As StoryBlocks programs run on a
centralized computer, the system can scale to support
multiple student groups in a classroom simply by
fabricating more blocks.

Support Customization and Extensibility. As the
StoryBlocks software tracks a visual tag, users can create
blocks of different sizes, colors, or materials without
disrupting the program functions. While the set of
StoryBlocks characters and actions is currently fixed,
future versions could enable the addition of new
characters by end users, similar to how Bonk [22] enabled
programmers to create custom voice characters in their
audio games.

Support Diverse Stories and Characters. We intend
StoryBlocks to be most appropriate for learners from age 8
to 18, but we designed it with the hope that it would be
welcoming to the widest possible group. As we developed
one set of starter blocks for all users, we chose characters
and actions that would be of interest to learners of all ages
and genders. We initially explored characters from fairy
tale stories, but later focused on a series of animal
characters that could represent different cultural
perspectives, gender roles, and personality types.

3.3 Story Playback

A key design goal for StoryBlocks is to enable learners to
create audio stories that are interesting and fun to listen
to so that they are rewarded for creating programs and
motivated to share their creations with others.

In the current prototype, the user initiates a story by
pressing a key on the laptop keyboard. The story is read
from start to finish, line by line. StoryBlocks system reads
each block from left to right, sorts the blocks based on
their x and y coordinates, and generates a word associated
with each block. StoryBlocks then combines all the words
into a sentence and adds different voices to characters and
sound effects to actions. For each line, the system narrates
a story-like description of the blocks. For example, the
blocks Cat → Run → Mouse might be read as “the cat
runs after the mouse.” In addition, the specific characters
and actions customize the voice used when reading this
sentence (in this case, it might be read in the cat’s high-
pitched voice) and the accompanying sound effects (in this
case, the sound of a cartoon character running).

Currently, user input during playback is limited to if-else
blocks; for these blocks, the system reads the options and
the player presses a key on the keyboard to choose a path.

4 TESTING WITH TEACHERS AND STUDENTS

To explore the StoryBlocks concept and our initial design
prototype, we conducted a formative study with several
groups of students, teachers, and educational aides
working together. We chose to test StoryBlocks in a
collaborative school environment as we imagine this to be
a common use of StoryBlocks in the future.

Our study was motivated by the following research
questions:

RQ1: How can students and teachers use StoryBlocks
to create audio stories?

RQ2: How do students and teacher groups collaborate
to create audio stories using StoryBlocks?

RQ3: What kinds of stories do people want to create
using StoryBlocks?

RQ4: How can we improve future versions of
StoryBlocks?

4.1 Participants

We conducted six design sessions. Each session included a
group that contained a combination of students, teachers,
and other educational staff. We recruited study
participants via our state’s coordinator of teachers of the
visually impaired (TVIs), and through our ongoing
partnerships with local schools.

We recruited 16 participants total (12 female), ranging in
age from 11 to 65 years old. Our participants included five
blind and low vision students (middle school and high
school), eight TVIs, and three staff members—two
Braillists (Braille transcriptionists) and one preschool staff
member. Groups were made up of individuals who
regularly worked with each other at school. One
participant, e, participated in two sessions; everyone else
participated in one session only. Table 1 describes the
participants.

Most participants had no prior computer science
experience, except for f, who previously earned a
computer science degree; j, who once took a robotics
course; and n and o, who had participated in computer
literacy training.

4.2 Apparatus

We used the prototype version of StoryBlocks described
previously. We fabricated a set of 31 program blocks,
which were placed in a box at the start of the session. The
blocks were as follows: cat and mouse (5 each); dragon
and turtle (3 each); cheese, dance, eat, explode, run, say (2
each); branch (2); loop (1).

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 5

4.3 Procedure

Study sessions took place in classrooms at our
participants’ schools or at our university research lab. The
first author facilitated all of the study sessions. Each
participant completed a consent or assent process before
participating in the research and each participant was
compensated for their time. Each session lasted
approximately 90 minutes. All sessions were audio and
video recorded. Each session proceeded as follows:

Introduction (15 minutes). The researcher introduced the
StoryBlocks concept and the prototype hardware.
Participants touched the workspace frame. The researcher
introduced and passed around each program block. To
demonstrate the physical connections between blocks, the
researcher asked the group to choose a character and
action block, and to connect them to create their first
program.

Next, the researcher constructed and demonstrated three
simple stories, one using only characters and actions and
the other two introducing loops and branches,
respectively. During this demonstration, participants were
encouraged to touch and interact with the program
blocks.

Recreating a Story (5 minutes). The researcher described a
simple story, which was either “Cat chases mouse and cat
explodes,” or “Dragon says hi and dragon dances with
turtle,” and asked the group to work together to recreate
the story using StoryBlocks. The group could play back
their audio story to debug their program. The group was
instructed to tell the researcher when they had completed
the task.

Creating a New Story (15 minutes). The researcher
instructed the group to work together to program a new
story of their choice. The group was allowed to use any of
the provided blocks and could also create new blocks
using pieces of paper; we chose this open-ended approach
to enable the groups to express their creativity and to
identify gaps in our initial set of blocks.

After creating their story, the group was instructed to act
it out as they would like it to be performed by the system;
we chose this approach so that groups could demonstrate
the types of story playback they would want to hear.

Group Discussion (30 minutes). The researcher interviewed
the group members about their experience using
StoryBlocks, their feedback about the current prototype,
and their thoughts on future directions for StoryBlocks.

5 FINDINGS

We describe how our participants created stories using
StoryBlocks and summarize participants’ feedback about
the prototype system.

5.1 Creating and Assembling Programs

In general, participant groups were able to use
StoryBlocks to construct story programs without much
confusion. For the Recreating a Story activity, five out of
six groups were able to correctly reproduce the two-line
example program; the sixth group misidentified a tangible
block and added the wrong block to their program. While
we did not define success or failure in the Creating a New
Story activity, as participants were allowed to bend the
rules to add new blocks and new functionality, we found
that each group was able to plan, implement, and test a
story.

Each group chose their own approach to creating and
programming their original stories. Two of the six groups
discussed the details of the story plot and characters
before assembling their code, while the other groups
followed a more iterative approach, creating one line of
the program at a time, and then discussing what to do
next.

We observed three recurring problems that affected
several of the participant groups. First, blind and visually
impaired participants were sometimes unable to identify
individual blocks based on the tactile symbol alone. In
these cases, their sighted partners would verify the
identity of the block.

Second, our participant groups sometimes had difficulty
using some of the more advanced programming features,
particularly conditional branching. Two of the six groups
had difficulty using branching in their story and required
extra help from the research team to do so.

Third, participant groups sometimes created programs
that did not follow our initial syntactic rules. For example,
one group wrote their entire program as a continuing line,
rather than placing each statement on its own line (Figure
4D). In that specific case, we might expect that their
program would result in valid output, much as a C
program can be written on one line so long as each
instruction is delimited with a semicolon, but the
divergence in the spatial layout of groups’ program
suggests some confusion about the rules of StoryBlocks
programs.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 6

Despite these challenges, our participant groups were able
to complete the study tasks (sometimes with assistance)
and remained engaged throughout the process.

5.2 Working in Groups

In general, each group seemed to enjoy the process of
creating programs using StoryBlocks: participants talked
with one another throughout the process and laughed at
the amusing stories that they created. We observed that
participants often smiled when they heard their first audio
story. After successfully completing the Recreating a Story
activity, some groups clapped or cheered.

We were interested to learn how participant would divide
up tasks within their groups. While we asked our
participant groups to work together during the study, we
did not specify how they should divide up their tasks. We
were therefore able to observe how groups delegated tasks
among themselves.

In reviewing the activities after the study sessions, we
identified a set of tasks that were common across the
different groups: planning, which involved discussing
ideas and making suggestions for programs (but not
manipulating blocks); creating new blocks via sticky notes;
organizing and sorting blocks; assembling code blocks; and
performing the completed story. Table 1 shows the tasks
performed by each group member.

Group members often shared tasks by taking turns or by
dividing a task into smaller parts. For example, the two

students in Group E took turns assembling code blocks,
and later divided the work of performing the story so that
one student read dialog and the other made sound effects.
Groups also divided tasks by ability. For example, as
sorting and organizing through blocks was sometimes
aided by visual search, this task was often performed by a
sighted teacher or staff member, although blind and
visually impaired students were usually able to perform
this task.

True to their roles at school, the teachers and staff often
took on the task of keeping students engaged in the
activity. Teachers and staff often checked in with the
students throughout the activity, asking what the group
should do next and verifying that the students were
following along. Teachers also sometimes made
adaptations to the work to increase accessibility; for
example, the teacher in Group B noted that the sticky
notes they were using were not accessible to the whole
group and began adding Braille labels to those notes
(Figure 4C).

Despite the groups’ efforts to work together, in two of the
groups, A and E, we observed that the visually impaired
students sometimes lost track of the ongoing
conversation. In both groups, this occurred when the
sighted team members began discussing some visual
aspect of the task without taking the time to include the
other members. However, in each case, this problem was
noticed, and the students were brought back into the
conversation.

Table 1. Groups in the study and tasks performed by each group member.

Group Size Participants Location Task: Planning Creating Organizing Assembling Performing

A 4
TVIs (a, b, c);
Visually impaired
preschool staff (d)

School
TVI (a), Visually
impaired
preschool staff (d)

TVIs (b, c) — TVIs (b, c) TVIs (a, b, c);
Visually impaired
preschool staff (d)

B 3
TVI (e), Braillist
(f), Blind high
school student (g)

University
lab

Braillist (f), Blind
high school
student (g)

TVI (e) TVI (e) Blind high
school student
(g)

Blind high school
student (g)

C 3

TVI (h), Braillist
(i), Low vision
high school
student (j)

School

TVI (h), low
vision high school
student (j)

Braillist (i) Braillist (i) Low vision high
school student
(j)

TVI (h)

D 2 TVIs (k, l) School TVIs (k, l) TVI (k) TVI (k) TVI (l) TVIs (k, l)

E 3

TVI (m), Blind
middle school
student (n), Low
vision middle
school student (o)

University
lab

Blind middle
school student (n),
Low vision middle
school student (o),
TVI (m)

TVI (m) Blind middle
school student
(n), Low vision
middle school
student (o)

Blind middle
school student
(n), Low vision
middle school
student (o)

TVI (m), Low
vision middle
school student
(o), Blind middle
school student (n)

F 2
TVI (e), Low
vision middle
school student (p)

School
TVI (e), Low
vision middle
school student (p)

TVI (e) TVI (e) Low vision
middle school
student (p)

TVI (e), Low
vision middle
school student (p)

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 7

5.3 Creating Original Stories

Each group created at least one story based on a topic of
their choice. Most of the groups created stories that built
upon the existing set of character and action blocks,
although one group, A, created a story about events at
their school. Although the processes by which each group
created their story varied, all of the groups engaged in
computational thinking practices like incremental design
of their program, testing the program to see whether it
matched their expectations, and debugging when the
program differed from their expectation [34].

During the Creating a New Story activity, groups were
given the option of creating new blocks. This approach
allowed us to identify what blocks the groups might wish
to create, and to explore how closely the group adhered to
the existing program syntax. Each group created at least
one new block during the process, writing its name on a
sticky note (and, in one case, adding Braille labels) and
placing it in the workspace.

The most common types of new blocks were additional
characters and actions, including teacher, donut, coffee,
revenge, and dance competition (Figure 4A and 4B).
However, some groups created blocks that represented
new language constructs entirely. Five of the six groups
created new blocks that represented some new language
feature, including adding numerical constants, string
constants, and sound effects. Finally, some groups added
blocks that altered the structure of the language itself,
adding linguistic features such as prepositions (“into the
lake”, “with the cheese”). Group E restructured their
program to look like a prose paragraph, with a constant
row of phrases, rather than as a stacked sequence of
actions (Figure 4D).

These user-created blocks provide insight about how to
extend the StoryBlocks language in both simple ways (e.g.,
adding new characters) and complex ways (e.g., adding
string operations). These possible changes are explored
further below.

5.4 Participant Feedback

Following the programming activities, we asked the
participant groups to offer feedback on the current
version of StoryBlocks and suggestions for future
versions.

Overall, our participants were enthusiastic about their
experience with StoryBlocks. During the post-activity
interview, 15 out of 16 participants expressed positive
feelings about the StoryBlocks prototype and its potential

for the future. Participants spoke positively about the
benefits of tangible blocks for diverse learners and noted
that StoryBlocks might be useful to both blind and sighted
children. Regarding the connection between StoryBlocks
and programming, one teacher, who had some previous
computer science experience, said that the storytelling
approach helped her to understand programming, and
that StoryBlocks “makes sense to me more than my CS class
20 years ago.”

Participants offered a number of suggestions for extending
the StoryBlocks system. Participants requested additional
blocks to represent new characters and actions, as well as
more voices and sound effects. Participants also requested
a manual or other training materials to help teachers,
parents, and students learn how to use StoryBlocks. One
common request, voiced by multiple participants, was to
incorporate text strings and Braille characters into
StoryBlocks; doing so would expand the possibilities of
what could be created using StoryBlocks, and might even
encourage students to learn Braille.

6 DISCUSSION

Our initial evaluation of StoryBlocks demonstrated that
the overall approach of combining tangible programming
and audio stories can be a compelling way to teach
introductory programming concepts in an accessible and
collaborative manner. At the same time, we found that
participants were eager to do more with StoryBlocks.
Here we discuss some of the design decisions that guided

Figure 4. Participants introduced new components to their
sample programs: A) new characters and actions; B)
strings, represented via text written on sticky notes; C)
strings as sticky notes with both printed text and Braille
labels; D) Program structured in paragraph form, rather
than as a series of stacked lines that represent story
actions.

C D

A B

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 8

the development of StoryBlocks, the limitations of the
current implementation, and the role of StoryBlocks in
supporting computational thinking practices.

6.1 Design Tensions and Trade-Offs

Developing StoryBlocks involved navigating numerous
design trade-offs. When designing StoryBlocks, we often
considered questions such as whether to create a
programming language that is large and expressive or
small and conceptually simple, or to create tactile blocks
that are complex and expensive (with moving parts and
embedded electronics) or simple and easy to fabricate. We
do not claim that the choices we made are better than
other choices; making different choices might result in
solutions that are quite different but equally promising.
However, we do feel that documenting the choices that
we made, and examining these trade-offs, may increase
our understanding of how to create accessible, engaging,
and fun programming tools.

Many of our design decisions involved trade-offs between
simplicity and expressivity. This type of design tension
occurs in many programming tools, especially those
programming tools that target novice coders. However,
these tensions may be magnified when considering
tangible programming tools, as adding additional
components results in more physical objects and,
potentially, physical clutter. For each additional feature,
tangible blocks representing that feature must be carried
around in sufficient quantity so that they can be used and
must be physically searched through whenever the
programmer is seeking a specific block. To date, we have
focused on creating a “core” set of blocks that can be used
to explore tangible programming concepts. In the future,
we intend to explore ways to quickly add or repurpose
blocks without creating too many additional objects.

Our goal of providing equal access to both blind and
sighted users also introduced some unique design
challenges. For example, when designing a visual (and
non-accessible) programming language, a designer can
communicate code types and features using a wide array
of visual characteristics such as size, shape, aspect ratio,
and visual texture, and can rely upon text labels to
emphasize how things work. In a non-visual tangible
interface, the user may be unable to perceive more subtle
differences. Also, while it is easy to simultaneously
compare multiple on-screen objects visually, comparing
tactile landmarks is limited by the user’s number of free
hands. Furthermore, tangible blocks are limited in their
ability to show labels, as the blocks may not be large

enough to contain Braille, or the user may be unable to
read Braille. A major concern here is that if the visual
components of the system are more efficient than the
tactile components, blind and sighted partners may have
difficulty working together, as we saw in some of our
study sessions.

6.2 StoryBlocks and Computational Thinking

StoryBlocks aims to support novices in learning about
computer science concepts. While the design of
StoryBlocks departs from that of traditional programming
languages in many ways, we identified a number of places
in which StoryBlocks supports aspects of computational
thinking [43]. Applying Brennan and Resnick’s [8]
framework of computational thinking concepts, practices,
and perspectives, we find that StoryBlocks supports the
concept of performing activities through sequences and, to
a limited extent, loops and conditionals, but provides little
or no support for events, parallelism, operators, or data.
StoryBlocks supports the practice of being incremental and
iterative in developing and playing back stories, and
provides opportunities for testing and debugging, but
currently does not support practices of reusing and
remixing or abstracting and modularizing. Finally,
StoryBlocks supports the perspective of expressing
through coding stories, and connecting with others by co-
creating and sharing stories, and may potentially support
questioning by encouraging students to learn about and
understand the technologies around them.

7 FUTURE WORK

We have identified a number of future directions for this
work, including extending the existing StoryBlocks
system, further supporting creative work and problem
solving, and applying this approach to new domains.

7.1 Improving StoryBlocks

Our user study revealed a number of possible
improvements to the StoryBlocks prototype. We can
improve the accessibility of StoryBlocks’s code blocks by
enriching the blocks’ tactile markers, such as by adding
textures or Braille labels. We can extend the multimodal
aspects of StoryBlocks by adding other forms of feedback
such as moving mechanical parts [29], different materials,
or even multi-sensory components such as blocks with
smell and taste [11].

We may also be able to extend the expressiveness of
program output in several ways, such as adding additional

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 9

text-to-speech voices and sound effects, or by enabling
end users to record their own voices and sound effects.

Developing tutorials, sample activities, and other
curricular materials would make it easier for parents,
teachers, and children to adopt StoryBlocks. Future
versions of StoryBlocks could incorporate a “tutorial
mode” in which users recreate simple stories as they did
in our study.

During our user evaluation, multiple participants
requested that we add mathematical expressions and text
strings to StoryBlocks. One approach to managing the
additional complexity of these features would be to
consider modular sets of program blocks, including a
starter set with basic characters and actions, along with
add-on sets of blocks representing mathematics, text
manipulation, variables, and other advanced features.

7.2 Supporting Creativity and Problem Solving

Beyond improving the usability and increasing the
functionality of StoryBlocks, we are interested in
improving StoryBlocks’s ability to represent creative work
and its ability to promote problem solving and
computational thinking. To support this goal, we could
extend StoryBlocks’s character set by adding new
characters or enabling users to customize characters;
advanced users could create their own physical blocks and
specify how the new content is rendered by the system,
such as by choosing voice parameters or sound effects.
We could also support sharing of users’ stories over the
Internet, as Scratch enables for its animations and games.

In addition to supporting user creativity, future versions
of StoryBlocks could promote problem solving and
computational thinking. One way to incorporate problem
solving into StoryBlocks would be to develop “puzzle”
stories in which part of a story is missing so that the user
is required to write code to fill in the missing pieces.

In the future, we may also explore how learners can
transfer their knowledge of StoryBlocks to more
traditional programming languages and explore how the
design of StoryBlocks itself can help or hinder such
transitions.

7.3 Enriching Gameplay

Our vision of StoryBlocks is to engage novice
programmers in playful activities such as writing and
sharing audio stories. We consider this aspect of
StoryBlocks to be a storytelling game similar to charades
or Pictionary. However, the current prototype focuses
mainly on creating stories, and provides very little explicit

support for gameplay. Future versions of StoryBlocks
could incorporate more game-like activities, such as
allowing a player to guess the outcome of a story as it is
being created, letting multiple players compete to create
the “best” story, or allowing players to create
interconnecting, round-robin-style stories.

7.4 New Domains for StoryBlocks

While we have designed StoryBlocks to support computer
science education, our underlying approach might also be
useful in supporting learning in other domains. We are
especially excited about the potential for StoryBlocks to
promote learning Braille. Braille literacy rates have
declined in recent years, and some researchers believe that
this decline may cause problems for blind children when
they become adults [19]. Incorporating Braille strings into
StoryBlocks would both increase the expressivity of the
system and offer a new way to learn Braille.

In addition to supporting Braille education, future
versions of StoryBlocks could be used to promote learning
in other domains through the use of add-on block sets. For
example, a physics add-on could include a set of blocks
representing objects in a physical simulation, such as
weights on a seesaw, and actions that allow the user to
manipulate the simulation. A physics student could then
use these blocks to run simulated experiments, listening to
the outcome of those experiments as an audio story.
StoryBlocks’s fundamental model of tangible nouns, verbs,
and commands, plus audio feedback, could be applied to
many educational domains, including music, mathematics,
or chemistry.

8 CONCLUSION

As society increasingly recognizes the importance of
computer science education, we must continue to identify
ways in which computer science education can exclude
learners with disabilities. By identifying the core benefits
of block-based languages and representing them in an
accessible format, StoryBlocks offers an accessible and
engaging learning environment for novice learners. Our
formative evaluation with students, teachers, and
educational staff shows that StoryBlocks’s tangible code
blocks and programmable audio stories provide a
foundation for mixed-ability groups to discuss and explore
programming concepts.

ACKNOWLEDGMENTS
We thank our participants for taking part in our study.
We also thank Mike Horn, Richard Ladner, Clayton Lewis,

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 10

Lauren Milne, and Kyle Reinholt for their feedback. This
work was supported by the National Science Foundation
under grants IIS-1619384 and IIS-1652907. Any opinions,
findings, conclusions or recommendations expressed in
this work are those of the authors and do not necessarily
reflect those of the National Science Foundation.

REFERENCES
[1] Khaled Albusays and Stephanie Ludi. 2016. Eliciting Programming

Challenges Faced by Developers with Visual Impairments:
Exploratory Study. In Proceedings of the 9th International
Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE ’16), 82–85. DOI:
https://doi.org/10.1145/2897586.2897616

[2] Catherine M. Baker, Lauren R. Milne, and Richard E. Ladner. 2015.
StructJumper: A Tool to Help Blind Programmers Navigate and
Understand the Structure of Code. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems
(CHI ’15), 3043–3052. DOI: https://doi.org/10.1145/2702123.2702589

[3] Ayah Bdeir. 2009. Electronics as material: littleBits. In Proceedings
of the 3rd International Conference on Tangible and Embedded
Interaction (TEI '09). ACM, New York, NY, USA, 397-400. DOI:
https://doi.org/10.1145/1517664.1517743

[4] Theresa Beaubouef and John Mason. 2005. Why the high attrition
rate for computer science students: some thoughts and
observations. SIGCSE Bull. 37, 2 (June 2005), 103-106. DOI:
http://dx.doi.org/10.1145/1083431.1083474

[5] Jeffrey P. Bigham, Maxwell B. Aller, Jeremy T. Brudvik, Jessica O.
Leung, Lindsay A. Yazzolino, and Richard E. Ladner. 2008. Inspiring
Blind High School Students to Pursue Computer Science with
Instant Messaging Chatbots. In Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education (SIGCSE
’08), 449–453. DOI: https://doi.org/10.1145/1352135.1352287

[6] Paulo Blikstein, Arnan Sipitakiat, Jayme Goldstein, João Wilbert,
Maggie Johnson, Steve Vranakis, Zebedee Pedersen, and W. Carey.
2016. Project Bloks: designing a development platform for tangible
programming for children.
http://projectbloks.withgoogle.com/static/Project_Bloks_position_p
aper_June_2016.pdf

[7] Stacy M. Branham and Shaun K. Kane. 2015. Collaborative
Accessibility: How Blind and Sighted Companions Co-Create
Accessible Home Spaces. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (CHI '15).
ACM, New York, NY, USA, 2373-2382. DOI:
https://doi.org/10.1145/2702123.2702511

[8] Karen Brennan and Mitchel Resnick. 2012. New frameworks for
studying and assessing the development of computational thinking.
In (AERA 2012), 1–25. Retrieved September 18, 2017 from
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

[9] Robin N. Brewer. 2018. Facilitating discussion and shared meaning:
Rethinking co-design sessions with people with vision
impairments. In Proceedings of the 12th EAI International
Conference on Pervasive Computing Technologies for
Healthcare (PervasiveHealth '18). ACM, New York, NY, USA, 258-
262. DOI: https://doi.org/10.1145/3240925.3240981

[10] Craig Brown and Amy Hurst. 2012. VizTouch: automatically
generated tactile visualizations of coordinate spaces. In Proceedings
of the Sixth International Conference on Tangible, Embedded and
Embodied Interaction (TEI '12), Stephen N. Spencer (Ed.). ACM,
New York, NY, USA, 131-138. DOI:
https://doi.org/10.1145/2148131.2148160

[11] MapSense: Multi-Sensory Interactive Maps for Children Living
with Visual Impairments. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI '16).
ACM, New York, NY, USA, 445-457. DOI:
https://doi.org/10.1145/2858036.2858375

[12] Erin Buehler, Stacy Branham, Abdullah Ali, Jeremy J. Chang,
Megan Kelly Hofmann, Amy Hurst, and Shaun K. Kane. 2015.
Sharing is Caring: Assistive Technology Designs on Thingiverse.
In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems (CHI '15). ACM, New York, NY,
USA, 525-534. DOI: https://doi.org/10.1145/2702123.2702525

[13] Christian, C. A., Nota, A., Grice, N. A., Sabbi, E., Shaheen, N.,
Greenfield, P., ... & de Mink, S. E. (2014, January). You Can Touch
This! Bringing HST images to life as 3-D models. In American
Astronomical Society Meeting Abstracts# 223 (Vol. 223).

[14] Elise Deitrick, Joseph Sanford, and R. Benjamin Shapiro. 2014.
BlockyTalky: A low-cost, extensible, open source, programmable,
networked toolkit for tangible creation. Proceedings of Conference
on Interaction Design for Children, Aarhus, Denmark.

[15] Michael S. Horn and Robert J. K. Jacob. 2007. Tangible
programming in the classroom with Tern. In CHI '07 Extended
Abstracts on Human Factors in Computing Systems (CHI EA '07).
ACM, New York, NY, USA, 1965-1970. DOI:
https://doi.org/10.1145/1240866.1240933

[16] Michael S. Horn, Erin Treacy Solovey, R. Jordan Crouser, and
Robert J.K. Jacob. 2009. Comparing the use of tangible and
graphical programming languages for informal science education.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '09). ACM, New York, NY, USA, 975-984.
DOI: https://doi.org/10.1145/1518701.1518851

[17] Amy Hurst and Jasmine Tobias. 2011. Empowering individuals with
do-it-yourself assistive technology. In The proceedings of the 13th
international ACM SIGACCESS conference on Computers and
accessibility (ASSETS '11). ACM, New York, NY, USA, 11-18. DOI:
http://dx.doi.org/10.1145/2049536.2049541

[18] Felix Hu, Ariel Zekelman, Michael Horn, and Frances Judd. 2015.
Strawbies: explorations in tangible programming. In Proceedings of
the 14th International Conference on Interaction Design and
Children (IDC '15). ACM, New York, NY, USA, 410-413. DOI:
http://dx.doi.org/10.1145/2771839.2771866

[19] L Johnson. (1996). The Braille Literacy Crisis for Children. Journal
of Visual Impairment & Blindness, 90(3), 276-78.

[20] Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin
Kaltenbrunner. 2007. The reacTable: exploring the synergy between
live music performance and tabletop tangible interfaces.
In Proceedings of the 1st international conference on Tangible and
embedded interaction (TEI '07). ACM, New York, NY, USA, 139-146.
DOI: http://dx.doi.org/10.1145/1226969.1226998

[21] Shaun K. Kane and Jeffrey P. Bigham. 2014. Tracking
@Stemxcomet: Teaching Programming to Blind Students via 3D
Printing, Crisis Management, and All Twitter. In Proceedings of the
45th ACM Technical Symposium on Computer Science Education
(SIGCSE ’14), 247–252.DOI: https://doi.org/10.1145/2538862.2538975

[22] Shaun K. Kane, Varsha Koushik, and Annika Muehlbradt. 2018.
Bonk: accessible programming for accessible audio games.
In Proceedings of the 17th ACM Conference on Interaction Design
and Children (IDC '18). ACM, New York, NY, USA, 132-142. DOI:
https://doi.org/10.1145/3202185.3202754

[23] Filiz Kalelioğlu. 2015. A new way of teaching programming skills to
K-12 students: Code. org. Computers in Human Behavior, 52, 200-
210.

[24] Caitlin Kelleher. 2015. Looking Glass. In Proceedings of the 46th
ACM Technical Symposium on Computer Science
Education (SIGCSE '15). ACM, New York, NY, USA, 271-271. DOI:
https://doi.org/10.1145/2676723.2691873

[25] Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers to
programming: A taxonomy of programming environments and
languages for novice programmers. ACM Comput. Surv. 37, 2 (June
2005), 83-137. DOI: http://dx.doi.org/10.1145/1089733.1089734

[26] Varsha Koushik and Clayton Lewis. 2016. An Accessible Blocks
Language: Work in Progress. In Proceedings of the 18th International
ACM SIGACCESS Conference on Computers and Accessibility
(ASSETS ’16), 317–318. DOI:
https://doi.org/10.1145/2982142.2982150

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 11

https://doi.org/10.1145/2897586.2897616
https://doi.org/10.1145/2702123.2702589
https://doi.org/10.1145/1517664.1517743
http://dx.doi.org/10.1145/1083431.1083474
https://doi.org/10.1145/1352135.1352287
http://projectbloks.withgoogle.com/static/Project_Bloks_position_paper_June_2016.pdf
http://projectbloks.withgoogle.com/static/Project_Bloks_position_paper_June_2016.pdf
https://doi.org/10.1145/2702123.2702511
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
https://doi.org/10.1145/3240925.3240981
https://doi.org/10.1145/2148131.2148160
https://doi.org/10.1145/2858036.2858375
https://doi.org/10.1145/2702123.2702525
https://doi.org/10.1145/1240866.1240933
https://doi.org/10.1145/1518701.1518851
http://dx.doi.org/10.1145/2049536.2049541
http://dx.doi.org/10.1145/2771839.2771866
http://dx.doi.org/10.1145/1226969.1226998
https://doi.org/10.1145/2538862.2538975
https://doi.org/10.1145/3202185.3202754
http://dx.doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/2982142.2982150

[27] Richard E. Ladner. 2015. Design for User Empowerment.
interactions 22, 2: 24–29. DOI: https://doi.org/10.1145/2723869

[28] Richard E. Ladner and Andreas Stefik. 2017. AccessCSforall:
Making Computer Science Accessible to K-12 Students in the
United States. SIGACCESS Access. Comput., 118: 3–8. DOI:
https://doi.org/10.1145/3124144.3124145

[29] Stephanie Ludi and Tom Reichlmayr. 2011. The use of robotics to
promote computing to pre-college students with visual
impairments. ACM Transactions on Computing Education (TOCE) 11,
3: 20.

[30] Stephanie Ludi. 2015. Position paper: Towards making block-based
programming accessible to blind users. IEEE Blocks and Beyond
Workshop, 67-69.

[31] Roberto Manduchi, Sri Kurniawan, Editors. 2012.Assistive
technology for blindness and low vision. CRC Press.

[32] Lauren R. Milne. 2017. Blocks4All: making block programming
languages accessible for blind children. ACM SIGACCESS
Accessibility and Computing, 117: 26–29.

[33] T. V. Raman. 1996. Emacspeak—a speech interface. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (CHI '96), Michael J. Tauber (Ed.). ACM, New York, NY,
USA, 66-71. DOI: http://dx.doi.org/10.1145/238386.238405

[34] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández,
Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner,
Eric Rosenbaum, Jay Silver, Brian Silverman, and Yasmin Kafai.
2009. Scratch: programming for all. Communications of the ACM 52,
11: 60–67. DOI: https://doi.org/10.1145/1592761.1592779

[35] Kimiko Ryokai, Michael Jongseon Lee, and Jonathan Micah
Breitbart. 2009. Children's storytelling and programming with
robotic characters. In Proceedings of the seventh ACM conference on
Creativity and cognition (C&C '09). ACM, New York, NY, USA, 19-
28. DOI: http://dx.doi.org/10.1145/1640233.1640240

[36] Jaime Sánchez and Fernando Aguayo. 2005. Blind Learners
Programming Through Audio. In CHI ’05 Extended Abstracts on
Human Factors in Computing Systems (CHI EA ’05), 1769–1772.
DOI: https://doi.org/10.1145/1056808.1057018

[37] Eric Schweikardt and Mark D. Gross. 2006. roBlocks: a robotic
construction kit for mathematics and science education.
In Proceedings of the 8th international conference on Multimodal
interfaces (ICMI '06). ACM, New York, NY, USA, 72-75. DOI:
http://dx.doi.org/10.1145/1180995.1181010

[38] Andreas Stefik and Susanna Siebert. 2013. An Empirical
Investigation into Programming Language Syntax. Trans. Comput.
Educ. 13, 4: 19:1–19:40. DOI: https://doi.org/10.1145/2534973

[39] Anja Thieme, Cecily Morrison, Nicolas Villar, Martin Grayson, and
Siân Lindley. 2017. Enabling Collaboration in Learning Computer
Programing Inclusive of Children with Vision Impairments.
In Proceedings of the 2017 Conference on Designing Interactive
Systems (DIS '17). ACM, New York, NY, USA, 739-752. DOI:
https://doi.org/10.1145/3064663.3064689

[40] Linda L. Werner, Brian Hanks, and Charlie McDowell. 2004. Pair-
programming helps female computer science students. J. Educ.
Resour. Comput. 4, 1, Article 4 (March 2004). DOI:
http://dx.doi.org/10.1145/1060071.1060075

[41] Michele A. Williams, Erin Buehler, Amy Hurst, and Shaun K. Kane.
2015. What not to wearable: using participatory workshops to
explore wearable device form factors for blind users. In Proceedings
of the 12th Web for Conference (W4A '15). ACM, New York, NY,
USA, Article 31, 4 pages. DOI:
https://doi.org/10.1145/2745555.2746664

[42] Michele A. Williams, Amy Hurst, and Shaun K. Kane. 2013. "Pray
before you step out": describing personal and situational blind
navigation behaviors. In Proceedings of the 15th International ACM
SIGACCESS Conference on Computers and Accessibility (ASSETS
'13). ACM, New York, NY, USA, , Article 28 , 8 pages. DOI:
http://dx.doi.org/10.1145/2513383.2513449

[43] Jeannette M. Wing. 2006. Computational thinking. Commun.
ACM 49, 3 (March 2006), 33-35. DOI:
https://doi.org/10.1145/1118178.1118215

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 492 Page 12

https://doi.org/10.1145/2723869
https://doi.org/10.1145/3124144.3124145
http://dx.doi.org/10.1145/238386.238405
https://doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/1640233.1640240
https://doi.org/10.1145/1056808.1057018
http://dx.doi.org/10.1145/1180995.1181010
https://doi.org/10.1145/2534973
https://doi.org/10.1145/3064663.3064689
http://dx.doi.org/10.1145/1060071.1060075
https://doi.org/10.1145/2745555.2746664

