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ABSTRACT 

Block-based programming languages can support novice 
programmers through features such as simplified code 
syntax and user-friendly libraries. However, most block-
based programming languages are highly visual, which 
makes them inaccessible to blind and visually impaired 
students. To address the inaccessibility of block-based 
languages, we introduce StoryBlocks, a tangible block-
based game that enables blind programmers to learn basic 
programming concepts by creating audio stories. In this 
paper, we document the design of StoryBlocks and report 
on a series of design activities with groups of teachers, 
Braille experts, and students. Participants in our design 
sessions worked together to create accessible stories, and 
their feedback offers insights for the future development 
of accessible, tangible programming tools. 
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1 INTRODUCTION 

Computer science is increasingly becoming a part of 
mainstream K-12 education. Learning how to create 
computer programs can empower students to pursue work 
in computer science and other STEM fields. Even for 
students who do not go on to pursue computing careers, 
learning computer science and can support computational 
thinking, which itself can be applied to many different 
domains [34]. However, computer science students may 
encounter a variety of barriers in their studies. As a result, 
computer science educational programs often suffer a 
high attrition rate [4] and may disproportionately drive 
out women and other marginalized students [15].  

Students with disabilities may experience many barriers in 
learning computer science due to inaccessible 
programming tools, unprepared teachers, and other 
concerns [27]. Supporting students with disabilities in 
computing careers is crucial, not only to support equal 
access to education and work, but because developing 
computational skills can help empower people to use, 
adapt, and create assistive technologies [27]. A key 
challenge is enabling students to work collaboratively 
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Figure 1. StoryBlocks is a tangible programming game in 
which users create audio stories by combining code 
blocks. Here a visually impaired high school student 
creates a story with assistance from teachers. 
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with teachers and other students; while group activities 
can encourage some students to learn computer science 
[40], people with disabilities who use assistive 
technologies often encounter barriers when using their 
assistive technology during collaborative activities [7]. A 
second challenge is to make block-based programming 
languages accessible to all students [34]. While block-
based programs offer advantages to novice programmers, 
they generally are not accessible to students with vision 
impairments [30]. 

To address the challenge of creating an accessible and 
educational programming environment, we introduce 
StoryBlocks (Figure 1), a programming game that uses 
tangible blocks to represent code. These blocks can be 
assembled to program simple audio games and stories. In 
this paper, we describe the design and development of 
StoryBlocks, the design of the tangible blocks and 
workspace, and format of the audio story output. To 
gather feedback about our prototype, we conducted six 
design sessions with blind and visually impaired students, 
teachers of the visually impaired (TVIs), Braille experts, 
and other educational staff. The contributions of this 
paper include documentation of the StoryBlocks 
prototype, user feedback from our design sessions, and 
example stories created by our design teams.  

2 RELATED WORK 

This work draws from best practices in designing 
accessible technology for blind and visually impaired 
people [31], as well as research on designing accessible 
programming environments, block-based languages, 
tangible computing environments, and storytelling-based 
programming tools. 

2.1 Accessible Programming Environments 

Blind and visually impaired programmers face many 
challenges while programming, including navigating code 
structure, identifying bugs in code, and performing visual 
tasks such as graphical user interface development [1]. For 
expert coders, tools such as Emacspeak [33] and 
StructJumper [2] use audio cues and navigation shortcuts 
to make it easier to read and navigate through code. 
However, these tools address the needs of expert 
programmers, and are not suited to novices. 

Other approaches to making coding accessible include 
programming languages that are optimized for both blind 
and sighted coders. Quorum [38] is a text-based 
programming language that enables programmers to 
create complex graphical applications, video and audio 

games, and other programs. Quorum is increasingly used 
to support accessibility in K-12 computer science 
education [28]. APL [36] is an audio programming 
language that allows blind and visually impaired 
programmers to create simple games and applications that 
use recorded sounds and text-to-speech. These tools 
provide accessible entry points to computer science but 
require learners to be skilled users of computer software 
and any necessary assistive technologies, which may leave 
out some children. 

Researchers and educators have developed curricula that 
support blind and visually impaired children in learning 
mainstream programming languages, often paired with 
some application library, such as teaching Java through 
programming robots [29], chat bots [5], 3D printing [21], 
and audio games [22]. These tools have the benefit of 
supporting mainstream programming languages, but may 
carry the complexities of these languages, which can 
present challenges for novice learners. Our present work 
focuses on providing a simplified introduction to 
programming for blind and visually impaired learners. 

2.2 Block-Based Programming Languages 

Block-based programming languages such as Scratch [34] 
have become popular means for introducing children to 
computer science, due in part to beginner-friendly 
features such as visual code blocks that suggest proper 
syntax, the ability to easily create games, animations, and 
other visual media, and the ability to easily share and 
remix programs online. While Scratch is perhaps the most 
popular block-based language, with millions of users1, 
many other programming environments, such as Blockly2 
and code.org [23], also use blocks. Blockly, an open source 
library, has been used to create a variety of block-based 
programming tools, such as BlockyTalky [14], which 
allows children to program networked mobile devices and 
musical instruments; ArduBlockly3, which enables block-
based programming of microcontrollers; and OzoBlockly4, 
which enables children to control robots with block-based 
programs. Unfortunately, neither Scratch nor Blockly are 
accessible to screen reader users, and both rely heavily on 
visual presentation for both creating code and observing 
its output. StoryBlocks offers an alternative approach to 

                                                                 
1 scratch.mit.edu/statistics 
2 developers.google.com/blockly 
3 github.com/carlosperate/ardublockly 
4 ozoblockly.com 
4 algobrix.com 
5 playosmo.com 
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block-based programming that provides equal access to 
blind and sighted learners. 

Some block-based programming environments have 
begun to address accessibility issues [30]. PseudoBlocks 
[26] enables blind programmers to navigate block-based 
programs via keyboard input and speech output. 
Blocks4All [32] enables blind users to explore block-based 
programs by touching a touch screen and receiving audio 
feedback. Project Torino [39] is an accessible 
programming environment that uses custom hardware 
“blocks” that can be connected together via cables to 
create audio-based programs. Like Torino, StoryBlocks 
uses physical components to create programs; however, 
StoryBlocks uses low-cost components and computer 
vision rather than custom electronics. StoryBlocks also 
focuses on audio stories as an output format. We consider 
these to be complementary approaches to a similar 
problem. 

2.3 Tangible Programming Toolkits  

In addition to supporting accessibility, tangible 
programming tools may help learners engage with 
computing concepts and may support collaborative 
programming [16]. Many current tangible programming 
toolkits support physical computing projects, as in 
roBlocks [35], littleBits [3], Project Bloks [6] and 
Algobrix4. These toolkits have physical blocks that may 

sometimes be accessible to blind and visually impaired 

learners, but they are rarely designed with accessibility 

in mind. 

Other tangible programming toolkits, such as Tern [15], 
Strawbies [18], and Osmo5, have focused on creating 
programming-like games in which learners compose 
programs by assembling a list of instructions, which then 
control an on-screen character or simulation. These 
systems are usually comprised of passive blocks, made of 
wood or cardboard, with visual tags on each block. A 
computer’s camera reads the series of blocks and executes 
the program. Often the shape of the block itself 
demonstrates its function, such as by having an if-block 
that demonstrates a branching “Y” shape. While these 
toolkits feature tangible blocks that might be 
understandable to a blind learner, they typically create on-
screen programs that are inaccessible. StoryBlocks follows 
a similar approach of using tangible blocks as input, but it 
has been designed such that both creating and playing 
back programs is accessible. 

2.4 Storytelling in Computer Science Education  

A significant challenge in designing accessible 
programming tools is creating program output that can be 
accessible and interesting to blind learners. In 
StoryBlocks, we use audio stories as an output format that 
can be accessible to both blind and sighted users and could 
even be easily translated into text for deaf learners and 
others.  

Using stories as program output has been employed 
previously, as many stories can be described as a series of 
objects and actions that correspond to program code. 
Strawbies [18] and Alice [25] enable programmers to 
control on-screen characters through code. Ryokai et al. 
[35] developed a robotic programming environment in 
which children created interactive stories by specifying a 
robot character’s behaviors. Storytelling Alice [25] and 
Looking Glass [24] enable novice programmers to control 
3D characters in their code and to create stories that can 
be played back or saved as a movie. These systems have 
largely focused on creating visual stories, while 
StoryBlocks explores how to create engaging and fun 
audio stories through code.  

2.5 Design Methods for Accessible User Interfaces  

Designing technology for and with people with vision 
impairments presents its own set of challenges, as 
activities such as sketching and storyboarding must be 
supplemented with a more accessible alternative. 
Participatory workshops are often used as a way to 
explore the design non-visual and tangible systems [9, 39, 
41]. We created a physical StoryBlocks prototype as a 
foundation for a series of collaborative design workshops. 

Another common approach is to include other 
stakeholders in the research activity, such as friends and 
family members, who may have a unique insight into the 
accessibility barriers encountered by an individual [7, 42]. 
We conducted our formative evaluation of StoryBlocks 
with selected groups of students, teachers, and assistive 
technology specialists. 

3 STORYBLOCKS 

To explore the design space of tangible programming 
tools for blind children, we developed the StoryBlocks 
prototype, which involved building the system software, 
designing the tactile blocks, and creating demonstration 
characters and voices for users’ programs. 
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3.1 System Overview 

The StoryBlocks system comprises a set of tangible blocks, 
an augmented workspace, and software for interpreting 
and playing back users’ story programs.  

Tangible Blocks. Each block represents one component of 
an interactive story, including characters, actions, and 
program control statements. Each block features a tactile 
symbol and a visual tag. Blocks do not contain any 
electronics, enabling them to be easily fabricated and 
modified. Each block is approximately 3.5 × 1 inch in size. 

Workspace. Programs are created in a designated 
workspace area. The workspace is 24 x 24 inches in size. 
Tactile borders indicate the boundaries of the workspace. 
The prototype workspace is constructed from 1-inch PVC 
pipe (Figure 1). Images are captured by an overhead 
webcam (currently a Logitech C615), connected to a 
laptop. 

Software. StoryBlocks programs are interpreted by a 
custom Python program on a nearby laptop. Visual tags 
are recognized using the reacTIVision library [20]. The 
user scans a program by pressing a key on the laptop’s 
keyboard; the program tags are read, the program is 
parsed, and the laptop produces audio output that 
corresponds to the user’s code.  

3.2 Design of Tactile Features 

StoryBlocks uses tangible blocks to represent programs. 
Because StoryBlocks may be used by blind learners, it was 
important that the tactile design of the blocks represent 
their function as clearly as possible. The initial set of 
blocks used in our prototype is shown in Figure 2. 

 

In designing the tangible blocks, we followed the 
following design criteria, derived from prior work in 
designing laser-cut and 3D-printed tactile graphics 
[9,12,13,25]: 

Communicate Type and Allowable Connections. The 
physical design of each block needs to communicate its 
overall type (e.g., character, action, or command), and 
which blocks can be connected to other blocks. In 
StoryBlocks, the shape of the program block 
communicates the block’s type—character blocks have 
square edges, actions have rounded edges, and control 
blocks have diamond-shaped edges—and the design of the 
notches and tabs along the edge of each block 
communicates valid connections between blocks (Figure 
3). For blocks that connect directly to other blocks, 
specifically the if-else blocks, we use a physical string to 
indicate the connection between the original block and the 
two end points. 

  

Figure 3. Blocks represent the phrase “The mouse eats 
cheese.” The tabs at the top and bottom indicate that more 
lines of code may be added to the program. 

Communicate Block Identity by Touch. Blocks should be 
differentiable using tactile information only, and without 
the need for Braille labels, as not all blind children can 
read Braille and because this toolkit should also be usable 
by sighted collaborators. A user should be able to quickly 
identify a block in their hand, find a specific block from 
within a pile of unsorted blocks, and count how many of 
each block are available. In StoryBlocks, each block 
features a tactile symbol with a distinctive shape. For 
example, the cat character features pointy ears, while the 
mouse character features round ears. 

Our initial set of tactile symbols was based on the open 
source EmojiOne5 characters. We chose a set of symbols 
with distinct shapes, flattened their images to a single 
color, and removed some unnecessary visual features, 
such as the holes in the cheese symbol. This approach 
enabled us to quickly create distinct tactile symbols and 
enables us to easily add more symbols in the future. 

Use Widely Available Materials. While including 
electronics inside blocks can enable rich interactions, as in 
Torino [39], we designed the components of StoryBlocks 
to be inexpensive and easy to fabricate [17]. The current 
prototype uses blocks that were laser cut and hand 
painted, although they could also be hand-cut from wood 
or cardboard. A full set of blocks can be produced on a 
laser cutter in about 15 minutes and requires about US$30 

                                                                 
5 www.emojione.com/emoji/v2 

 

Figure 2. Blocks used in the initial StoryBlocks prototype 
include characters (mouse, turtle, cat, snake, cheese), 
actions (explode, talk, run, dance, eat), and control 
structures (repeat, branch).  
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in materials. As StoryBlocks programs run on a 
centralized computer, the system can scale to support 
multiple student groups in a classroom simply by 
fabricating more blocks. 

Support Customization and Extensibility. As the 
StoryBlocks software tracks a visual tag, users can create 
blocks of different sizes, colors, or materials without 
disrupting the program functions. While the set of 
StoryBlocks characters and actions is currently fixed, 
future versions could enable the addition of new 
characters by end users, similar to how Bonk [22] enabled 
programmers to create custom voice characters in their 
audio games. 

Support Diverse Stories and Characters. We intend 
StoryBlocks to be most appropriate for learners from age 8 
to 18, but we designed it with the hope that it would be 
welcoming to the widest possible group. As we developed 
one set of starter blocks for all users, we chose characters 
and actions that would be of interest to learners of all ages 
and genders. We initially explored characters from fairy 
tale stories, but later focused on a series of animal 
characters that could represent different cultural 
perspectives, gender roles, and personality types.  

3.3 Story Playback 

A key design goal for StoryBlocks is to enable learners to 
create audio stories that are interesting and fun to listen 
to so that they are rewarded for creating programs and 
motivated to share their creations with others. 

In the current prototype, the user initiates a story by 
pressing a key on the laptop keyboard. The story is read 
from start to finish, line by line. StoryBlocks system reads 
each block from left to right, sorts the blocks based on 
their x and y coordinates, and generates a word associated 
with each block. StoryBlocks then combines all the words 
into a sentence and adds different voices to characters and 
sound effects to actions. For each line, the system narrates 
a story-like description of the blocks. For example, the 
blocks Cat → Run → Mouse might be read as “the cat 
runs after the mouse.” In addition, the specific characters 
and actions customize the voice used when reading this 
sentence (in this case, it might be read in the cat’s high-
pitched voice) and the accompanying sound effects (in this 
case, the sound of a cartoon character running).  

Currently, user input during playback is limited to if-else 
blocks; for these blocks, the system reads the options and 
the player presses a key on the keyboard to choose a path. 

4 TESTING WITH TEACHERS AND STUDENTS 

To explore the StoryBlocks concept and our initial design 
prototype, we conducted a formative study with several 
groups of students, teachers, and educational aides 
working together. We chose to test StoryBlocks in a 
collaborative school environment as we imagine this to be 
a common use of StoryBlocks in the future.  

Our study was motivated by the following research 
questions: 

RQ1:   How can students and teachers use StoryBlocks 
to create audio stories? 

RQ2:   How do students and teacher groups collaborate 
to create audio stories using StoryBlocks?  

RQ3:   What kinds of stories do people want to create 
using StoryBlocks? 

RQ4: How can we improve future versions of 
StoryBlocks?  

4.1 Participants 

We conducted six design sessions. Each session included a 
group that contained a combination of students, teachers, 
and other educational staff. We recruited study 
participants via our state’s coordinator of teachers of the 
visually impaired (TVIs), and through our ongoing 
partnerships with local schools. 

We recruited 16 participants total (12 female), ranging in 
age from 11 to 65 years old. Our participants included five 
blind and low vision students (middle school and high 
school), eight TVIs, and three staff members—two 
Braillists (Braille transcriptionists) and one preschool staff 
member. Groups were made up of individuals who 
regularly worked with each other at school. One 
participant, e, participated in two sessions; everyone else 
participated in one session only. Table 1 describes the 
participants.  

Most participants had no prior computer science 
experience, except for f, who previously earned a 
computer science degree; j, who once took a robotics 
course; and n and o, who had participated in computer 
literacy training.  

4.2 Apparatus 

We used the prototype version of StoryBlocks described 
previously. We fabricated a set of 31 program blocks, 
which were placed in a box at the start of the session. The 
blocks were as follows: cat and mouse (5 each); dragon 
and turtle (3 each); cheese, dance, eat, explode, run, say (2 
each); branch (2); loop (1).  
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4.3  Procedure 

Study sessions took place in classrooms at our 
participants’ schools or at our university research lab. The 
first author facilitated all of the study sessions. Each 
participant completed a consent or assent process before 
participating in the research and each participant was 
compensated for their time. Each session lasted 
approximately 90 minutes. All sessions were audio and 
video recorded. Each session proceeded as follows: 

Introduction (15 minutes). The researcher introduced the 
StoryBlocks concept and the prototype hardware. 
Participants touched the workspace frame. The researcher 
introduced and passed around each program block. To 
demonstrate the physical connections between blocks, the 
researcher asked the group to choose a character and 
action block, and to connect them to create their first 
program.  

Next, the researcher constructed and demonstrated three 
simple stories, one using only characters and actions and 
the other two introducing loops and branches, 
respectively. During this demonstration, participants were 
encouraged to touch and interact with the program 
blocks. 

Recreating a Story (5 minutes). The researcher described a 
simple story, which was either “Cat chases mouse and cat 
explodes,” or “Dragon says hi and dragon dances with 
turtle,” and asked the group to work together to recreate 
the story using StoryBlocks. The group could play back 
their audio story to debug their program. The group was 
instructed to tell the researcher when they had completed 
the task. 

Creating a New Story (15 minutes). The researcher 
instructed the group to work together to program a new 
story of their choice. The group was allowed to use any of 
the provided blocks and could also create new blocks 
using pieces of paper; we chose this open-ended approach 
to enable the groups to express their creativity and to 
identify gaps in our initial set of blocks.  

After creating their story, the group was instructed to act 
it out as they would like it to be performed by the system; 
we chose this approach so that groups could demonstrate 
the types of story playback they would want to hear. 

Group Discussion (30 minutes). The researcher interviewed 
the group members about their experience using 
StoryBlocks, their feedback about the current prototype, 
and their thoughts on future directions for StoryBlocks. 

5 FINDINGS 

We describe how our participants created stories using 
StoryBlocks and summarize participants’ feedback about 
the prototype system.  

5.1 Creating and Assembling Programs 

In general, participant groups were able to use 
StoryBlocks to construct story programs without much 
confusion. For the Recreating a Story activity, five out of 
six groups were able to correctly reproduce the two-line 
example program; the sixth group misidentified a tangible 
block and added the wrong block to their program. While 
we did not define success or failure in the Creating a New 
Story activity, as participants were allowed to bend the 
rules to add new blocks and new functionality, we found 
that each group was able to plan, implement, and test a 
story.  

Each group chose their own approach to creating and 
programming their original stories. Two of the six groups 
discussed the details of the story plot and characters 
before assembling their code, while the other groups 
followed a more iterative approach, creating one line of 
the program at a time, and then discussing what to do 
next. 

We observed three recurring problems that affected 
several of the participant groups. First, blind and visually 
impaired participants were sometimes unable to identify 
individual blocks based on the tactile symbol alone. In 
these cases, their sighted partners would verify the 
identity of the block. 

Second, our participant groups sometimes had difficulty 
using some of the more advanced programming features, 
particularly conditional branching. Two of the six groups 
had difficulty using branching in their story and required 
extra help from the research team to do so. 

Third, participant groups sometimes created programs 
that did not follow our initial syntactic rules. For example, 
one group wrote their entire program as a continuing line, 
rather than placing each statement on its own line (Figure 
4D). In that specific case, we might expect that their 
program would result in valid output, much as a C 
program can be written on one line so long as each 
instruction is delimited with a semicolon, but the 
divergence in the spatial layout of groups’ program 
suggests some confusion about the rules of StoryBlocks 
programs. 
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Despite these challenges, our participant groups were able 
to complete the study tasks (sometimes with assistance) 
and remained engaged throughout the process.  

5.2 Working in Groups 

In general, each group seemed to enjoy the process of 
creating programs using StoryBlocks: participants talked 
with one another throughout the process and laughed at 
the amusing stories that they created. We observed that 
participants often smiled when they heard their first audio 
story. After successfully completing the Recreating a Story 
activity, some groups clapped or cheered.  

We were interested to learn how participant would divide 
up tasks within their groups. While we asked our 
participant groups to work together during the study, we 
did not specify how they should divide up their tasks. We 
were therefore able to observe how groups delegated tasks 
among themselves. 

In reviewing the activities after the study sessions, we 
identified a set of tasks that were common across the 
different groups: planning, which involved discussing 
ideas and making suggestions for programs (but not 
manipulating blocks); creating new blocks via sticky notes; 
organizing and sorting blocks; assembling code blocks; and 
performing the completed story. Table 1 shows the tasks 
performed by each group member.  

Group members often shared tasks by taking turns or by 
dividing a task into smaller parts. For example, the two 

students in Group E took turns assembling code blocks, 
and later divided the work of performing the story so that 
one student read dialog and the other made sound effects. 
Groups also divided tasks by ability. For example, as 
sorting and organizing through blocks was sometimes 
aided by visual search, this task was often performed by a 
sighted teacher or staff member, although blind and 
visually impaired students were usually able to perform 
this task. 

True to their roles at school, the teachers and staff often 
took on the task of keeping students engaged in the 
activity. Teachers and staff often checked in with the 
students throughout the activity, asking what the group 
should do next and verifying that the students were 
following along. Teachers also sometimes made 
adaptations to the work to increase accessibility; for 
example, the teacher in Group B noted that the sticky 
notes they were using were not accessible to the whole 
group and began adding Braille labels to those notes 
(Figure 4C). 

Despite the groups’ efforts to work together, in two of the 
groups, A and E, we observed that the visually impaired 
students sometimes lost track of the ongoing 
conversation. In both groups, this occurred when the 
sighted team members began discussing some visual 
aspect of the task without taking the time to include the 
other members. However, in each case, this problem was 
noticed, and the students were brought back into the 
conversation. 

Table 1. Groups in the study and tasks performed by each group member. 

Group Size Participants Location Task: Planning Creating Organizing Assembling Performing 

A 4 
TVIs (a, b, c); 
Visually impaired 
preschool staff (d)  

School 
TVI (a), Visually 
impaired 
preschool staff (d) 

TVIs (b, c) — TVIs (b, c) TVIs (a, b, c); 
Visually impaired 
preschool staff (d) 

B 3 
TVI (e), Braillist 
(f), Blind high 
school student (g) 

University 
lab 

Braillist (f), Blind 
high school 
student (g) 

TVI (e) TVI (e) Blind high 
school student 
(g) 

Blind high school 
student (g) 

C 3 

TVI (h), Braillist 
(i), Low vision 
high school 
student (j) 

School 

TVI (h), low 
vision high school 
student (j) 

Braillist (i) Braillist (i) Low vision high 
school student 
(j) 

TVI (h) 

D 2 TVIs (k, l) School TVIs (k, l) TVI (k) TVI (k) TVI (l) TVIs (k, l) 

E 3 

TVI (m), Blind 
middle school 
student (n), Low 
vision middle 
school student (o) 

University 
lab 

Blind middle 
school student (n), 
Low vision middle 
school student (o), 
TVI (m) 

TVI (m) Blind middle 
school student 
(n), Low vision 
middle school 
student (o) 

Blind middle 
school student 
(n), Low vision 
middle school 
student (o) 

TVI (m), Low 
vision middle 
school student 
(o), Blind middle 
school student (n) 

F 2 
TVI (e), Low 
vision middle 
school student (p) 

School 
TVI (e), Low 
vision middle 
school student (p) 

TVI (e) TVI (e) Low vision 
middle school 
student (p) 

TVI (e), Low 
vision middle 
school student (p) 
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5.3 Creating Original Stories 

Each group created at least one story based on a topic of 
their choice. Most of the groups created stories that built 
upon the existing set of character and action blocks, 
although one group, A, created a story about events at 
their school. Although the processes by which each group 
created their story varied, all of the groups engaged in 
computational thinking practices like incremental design 
of their program, testing the program to see whether it 
matched their expectations, and debugging when the 
program differed from their expectation [34].  

During the Creating a New Story activity, groups were 
given the option of creating new blocks. This approach 
allowed us to identify what blocks the groups might wish 
to create, and to explore how closely the group adhered to 
the existing program syntax. Each group created at least 
one new block during the process, writing its name on a 
sticky note (and, in one case, adding Braille labels) and 
placing it in the workspace.  

The most common types of new blocks were additional 
characters and actions, including teacher, donut, coffee, 
revenge, and dance competition (Figure 4A and 4B). 
However, some groups created blocks that represented 
new language constructs entirely. Five of the six groups 
created new blocks that represented some new language 
feature, including adding numerical constants, string 
constants, and sound effects. Finally, some groups added 
blocks that altered the structure of the language itself, 
adding linguistic features such as prepositions (“into the 
lake”, “with the cheese”). Group E restructured their 
program to look like a prose paragraph, with a constant 
row of phrases, rather than as a stacked sequence of 
actions (Figure 4D).  

These user-created blocks provide insight about how to 
extend the StoryBlocks language in both simple ways (e.g., 
adding new characters) and complex ways (e.g., adding 
string operations). These possible changes are explored 
further below. 

5.4 Participant Feedback 

Following the programming activities, we asked the 
participant groups to offer feedback on the current 
version of StoryBlocks and suggestions for future 
versions. 

Overall, our participants were enthusiastic about their 
experience with StoryBlocks. During the post-activity 
interview, 15 out of 16 participants expressed positive 
feelings about the StoryBlocks prototype and its potential 

for the future. Participants spoke positively about the 
benefits of tangible blocks for diverse learners and noted 
that StoryBlocks might be useful to both blind and sighted 
children. Regarding the connection between StoryBlocks 
and programming, one teacher, who had some previous 
computer science experience, said that the storytelling 
approach helped her to understand programming, and 
that StoryBlocks “makes sense to me more than my CS class 
20 years ago.”  

Participants offered a number of suggestions for extending 
the StoryBlocks system. Participants requested additional 
blocks to represent new characters and actions, as well as 
more voices and sound effects. Participants also requested 
a manual or other training materials to help teachers, 
parents, and students learn how to use StoryBlocks. One 
common request, voiced by multiple participants, was to 
incorporate text strings and Braille characters into 
StoryBlocks; doing so would expand the possibilities of 
what could be created using StoryBlocks, and might even 
encourage students to learn Braille. 

 

6 DISCUSSION 

Our initial evaluation of StoryBlocks demonstrated that 
the overall approach of combining tangible programming 
and audio stories can be a compelling way to teach 
introductory programming concepts in an accessible and 
collaborative manner. At the same time, we found that 
participants were eager to do more with StoryBlocks. 
Here we discuss some of the design decisions that guided 

   

   
Figure 4. Participants introduced new components to their 
sample programs: A) new characters and actions; B) 
strings, represented via text written on sticky notes; C) 
strings as sticky notes with both printed text and Braille 
labels; D) Program structured in paragraph form, rather 
than as a series of stacked lines that represent story 
actions. 
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the development of StoryBlocks, the limitations of the 
current implementation, and the role of StoryBlocks in 
supporting computational thinking practices. 

6.1 Design Tensions and Trade-Offs 

Developing StoryBlocks involved navigating numerous 
design trade-offs. When designing StoryBlocks, we often 
considered questions such as whether to create a 
programming language that is large and expressive or 
small and conceptually simple, or to create tactile blocks 
that are complex and expensive (with moving parts and 
embedded electronics) or simple and easy to fabricate. We 
do not claim that the choices we made are better than 
other choices; making different choices might result in 
solutions that are quite different but equally promising. 
However, we do feel that documenting the choices that 
we made, and examining these trade-offs, may increase 
our understanding of how to create accessible, engaging, 
and fun programming tools. 

Many of our design decisions involved trade-offs between 
simplicity and expressivity. This type of design tension 
occurs in many programming tools, especially those 
programming tools that target novice coders. However, 
these tensions may be magnified when considering 
tangible programming tools, as adding additional 
components results in more physical objects and, 
potentially, physical clutter. For each additional feature, 
tangible blocks representing that feature must be carried 
around in sufficient quantity so that they can be used and 
must be physically searched through whenever the 
programmer is seeking a specific block. To date, we have 
focused on creating a “core” set of blocks that can be used 
to explore tangible programming concepts. In the future, 
we intend to explore ways to quickly add or repurpose 
blocks without creating too many additional objects. 

Our goal of providing equal access to both blind and 
sighted users also introduced some unique design 
challenges. For example, when designing a visual (and 
non-accessible) programming language, a designer can 
communicate code types and features using a wide array 
of visual characteristics such as size, shape, aspect ratio, 
and visual texture, and can rely upon text labels to 
emphasize how things work. In a non-visual tangible 
interface, the user may be unable to perceive more subtle 
differences. Also, while it is easy to simultaneously 
compare multiple on-screen objects visually, comparing 
tactile landmarks is limited by the user’s number of free 
hands. Furthermore, tangible blocks are limited in their 
ability to show labels, as the blocks may not be large 

enough to contain Braille, or the user may be unable to 
read Braille. A major concern here is that if the visual 
components of the system are more efficient than the 
tactile components, blind and sighted partners may have 
difficulty working together, as we saw in some of our 
study sessions. 

6.2 StoryBlocks and Computational Thinking 

StoryBlocks aims to support novices in learning about 
computer science concepts. While the design of 
StoryBlocks departs from that of traditional programming 
languages in many ways, we identified a number of places 
in which StoryBlocks supports aspects of computational 
thinking [43]. Applying Brennan and Resnick’s [8] 
framework of computational thinking concepts, practices, 
and perspectives, we find that StoryBlocks supports the 
concept of performing activities through sequences and, to 
a limited extent, loops and conditionals, but provides little 
or no support for events, parallelism, operators, or data. 
StoryBlocks supports the practice of being incremental and 
iterative in developing and playing back stories, and 
provides opportunities for testing and debugging, but 
currently does not support practices of reusing and 
remixing or abstracting and modularizing. Finally, 
StoryBlocks supports the perspective of expressing 
through coding stories, and connecting with others by co-
creating and sharing stories, and may potentially support 
questioning by encouraging students to learn about and 
understand the technologies around them.  

7 FUTURE WORK 

We have identified a number of future directions for this 
work, including extending the existing StoryBlocks 
system, further supporting creative work and problem 
solving, and applying this approach to new domains. 

7.1 Improving StoryBlocks  

Our user study revealed a number of possible 
improvements to the StoryBlocks prototype. We can 
improve the accessibility of StoryBlocks’s code blocks by 
enriching the blocks’ tactile markers, such as by adding 
textures or Braille labels. We can extend the multimodal 
aspects of StoryBlocks by adding other forms of feedback 
such as moving mechanical parts [29], different materials, 
or even multi-sensory components such as blocks with 
smell and taste [11].  

We may also be able to extend the expressiveness of 
program output in several ways, such as adding additional 
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text-to-speech voices and sound effects, or by enabling 
end users to record their own voices and sound effects.  

Developing tutorials, sample activities, and other 
curricular materials would make it easier for parents, 
teachers, and children to adopt StoryBlocks. Future 
versions of StoryBlocks could incorporate a “tutorial 
mode” in which users recreate simple stories as they did 
in our study. 

During our user evaluation, multiple participants 
requested that we add mathematical expressions and text 
strings to StoryBlocks. One approach to managing the 
additional complexity of these features would be to 
consider modular sets of program blocks, including a 
starter set with basic characters and actions, along with 
add-on sets of blocks representing mathematics, text 
manipulation, variables, and other advanced features.  

7.2 Supporting Creativity and Problem Solving 

Beyond improving the usability and increasing the 
functionality of StoryBlocks, we are interested in 
improving StoryBlocks’s ability to represent creative work 
and its ability to promote problem solving and 
computational thinking. To support this goal, we could 
extend StoryBlocks’s character set by adding new 
characters or enabling users to customize characters; 
advanced users could create their own physical blocks and 
specify how the new content is rendered by the system, 
such as by choosing voice parameters or sound effects. 
We could also support sharing of users’ stories over the 
Internet, as Scratch enables for its animations and games.  

In addition to supporting user creativity, future versions 
of StoryBlocks could promote problem solving and 
computational thinking. One way to incorporate problem 
solving into StoryBlocks would be to develop “puzzle” 
stories in which part of a story is missing so that the user 
is required to write code to fill in the missing pieces.  

In the future, we may also explore how learners can 
transfer their knowledge of StoryBlocks to more 
traditional programming languages and explore how the 
design of StoryBlocks itself can help or hinder such 
transitions. 

7.3 Enriching Gameplay 

Our vision of StoryBlocks is to engage novice 
programmers in playful activities such as writing and 
sharing audio stories. We consider this aspect of 
StoryBlocks to be a storytelling game similar to charades 
or Pictionary. However, the current prototype focuses 
mainly on creating stories, and provides very little explicit 

support for gameplay. Future versions of StoryBlocks 
could incorporate more game-like activities, such as 
allowing a player to guess the outcome of a story as it is 
being created, letting multiple players compete to create 
the “best” story, or allowing players to create 
interconnecting, round-robin-style stories. 

7.4 New Domains for StoryBlocks 

While we have designed StoryBlocks to support computer 
science education, our underlying approach might also be 
useful in supporting learning in other domains. We are 
especially excited about the potential for StoryBlocks to 
promote learning Braille. Braille literacy rates have 
declined in recent years, and some researchers believe that 
this decline may cause problems for blind children when 
they become adults [19]. Incorporating Braille strings into 
StoryBlocks would both increase the expressivity of the 
system and offer a new way to learn Braille.  

In addition to supporting Braille education, future 
versions of StoryBlocks could be used to promote learning 
in other domains through the use of add-on block sets. For 
example, a physics add-on could include a set of blocks 
representing objects in a physical simulation, such as 
weights on a seesaw, and actions that allow the user to 
manipulate the simulation. A physics student could then 
use these blocks to run simulated experiments, listening to 
the outcome of those experiments as an audio story. 
StoryBlocks’s fundamental model of tangible nouns, verbs, 
and commands, plus audio feedback, could be applied to 
many educational domains, including music, mathematics, 
or chemistry. 

8 CONCLUSION 

As society increasingly recognizes the importance of 
computer science education, we must continue to identify 
ways in which computer science education can exclude 
learners with disabilities. By identifying the core benefits 
of block-based languages and representing them in an 
accessible format, StoryBlocks offers an accessible and 
engaging learning environment for novice learners. Our 
formative evaluation with students, teachers, and 
educational staff shows that StoryBlocks’s tangible code 
blocks and programmable audio stories provide a 
foundation for mixed-ability groups to discuss and explore 
programming concepts. 
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