

“It Broadens My Mind”: Empowering People with
Cognitive Disabilities through Computing Education

Varsha Koushik and Shaun K. Kane
Department of Computer Science

 University of Colorado Boulder

Boulder, CO, USA

 {varsha.koushik, shaun.kane}@colorado.edu

ABSTRACT

Computer science education is widely viewed as a path to
empowerment for young people, potentially leading to
higher education, careers, and development of
computational thinking skills. However, few resources exist
for people with cognitive disabilities to learn computer
science. In this paper, we document our observations of a
successful program in which young adults with cognitive
disabilities are trained in computing concepts. Through
field observations and interviews, we identify instructional
strategies used by this group, accessibility challenges
encountered by this group, and how instructors and
students leverage peer learning to support technical
education. Our findings lead to guidelines for developing
tools and curricula to support young adults with cognitive
disabilities in learning computer science.

CCS CONCEPTS
• Human-centered computing → Accessibility → Empirical
studies in accessibility

KEYWORDS
Cognitive disability; computer science education; accessibility.

ACM Reference format:

Varsha Koushik and Shaun K. Kane 2019. “It Broadens My Mind”:
Empowering People with Cognitive Disabilities through Computing
Education. In 2019 CHI Conference on Human Factors in Computing Systems
Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland, UK. ACM, NY,
NY, USA. Paper 514, 12 pages. https://doi.org/10.1145/3290605.3300744

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
CHI 2019, May 4-9, 2019, Glasgow, Scotland, UK.
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5970-2/19/05...$15.00.

DOI: https://doi.org/10.1145/3290605.3300744

1 INTRODUCTION

Computer science education is quickly becoming a core
skill for young people around the world. Developing
computer science skills can lead to opportunities in higher
education and can lead to gainful employment. It is
estimated that there will be over one million job openings
in the field of computing by the year 2020 [6]. Computer
science skills are also essential to work in STEM and in
many non-STEM fields [25]. Aside from learning skills
directly related to computing careers, learning computer
science can also develop computational thinking skills,
which can be useful throughout one’s life [4].

In recent years, many groups have examined barriers to
participation in computer science. Organizations such as
AccessComputing [7] and AccessCSForAll [18] have
focused on identifying and addressing barriers encountered
by students with disabilities while studying computer
science. People with disabilities represent up to 15% of the
K-12 student population [20] and many may experience
accessibility issues when learning computer science.

While much research has addressed accessibility issues in
computer science for people with vision-related disabilities
(e.g., [1, 16, 34]), relatively little research has explored
cognitive accessibility issues in computer science. One

Figure 1. Members of Code Club work together on
programming projects. One member works with an
instructor to solve a programming problem.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 1

mailto:Permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3290605.3300744&domain=pdf&date_stamp=2019-05-02

barrier to including students with diverse cognitive abilities
is the lack of pedagogical resources tailored to this
population [13]. This is a chicken-and-egg problem, as there
exist relatively few examples of computer science courses
or workshops that address this population, making it more
difficult to identify successful strategies for including this
population in computer science education activities.

In considering how to include individuals with cognitive
disabilities in computer science education, several questions
arise. First, how do we adapt curricular materials to work
best for this population? Second, what developer tools,
technologies, and project types may best support this
population in learning computer science? Third, how can
we structure computer science educational activities to best
support these learners? Much of the recent interest in
computer science education has focused on the attainment
of jobs [26], while the design for user empowerment
approach [19] has focused on empowering people with
disabilities to build their own assistive technology. What
learning outcomes are ideal for computer scientists with
cognitive disabilities?

To explore these issues, we present a qualitative study of a
technology and programming group that targets young
adults with moderate to severe cognitive disabilities. For
two years, this group, which we will refer to as Code Club,
has trained young adults with cognitive disabilities to work
as information technology professionals, and has
increasingly incorporated aspects of computer science into
its curriculum. We report on a series of field observations
and interviews with instructional staff and members of
Code Club. Our research to date has focused on
understanding how this group has developed its own
computing curriculum, how they have identified and
overcome accessibility barriers, and how members have
gained new skills through their participation. By
highlighting a program that has successfully reached this
underserved population, we identify accessibility challenges
and strategies for overcoming these challenges to create an
inclusive computer science curriculum. Our research
explores the following research questions:

RQ1. What accessibility challenges do members of this
community encounter when learning computer
science?

RQ2. What workarounds have they developed to address
these challenges?

RQ3. How do members of the community work together to
address individual and group accessibility challenges?

RQ4. How do members of the community believe they
benefit from learning computer science?

2 RELATED WORK

2.1 Education and Cognitive Disabilities

Lewis [22] provides an overview of human-computer
interaction challenges for people with cognitive disabilities.
Lewis highlights challenges related to communication and
working with complex written materials, and additionally
notes that a major challenge is that individuals with
cognitive disabilities are underestimated and are thus
excluded from educational opportunities.

Much research about educational approaches for students
with cognitive disabilities has built upon the Universal
Design for Learning (UDL) framework [32]. UDL has been
used to support computer science learning [14,15,28]. This
approach emphasizes practices such as representing
information in multiple formats, providing clear step-by-
step instructions, interleaving instruction with inquiry
activities, and facilitating peer-to-peer learning [23,33].
While the teaching staff at our field site did not formally
follow UDL practices, their work provides an example of
how these principles may be adopted in an informal
educational setting.

2.2 Inclusive Computer Science Education

Much research on inclusive CS education has focused on
making CS accessible to blind and visually impaired
students. A blind student who is able to overcome
inaccessible development tools can often perform as well as
any sighted person and may pursue higher education in CS
or a career in computing. Thus, research on the accessibility
of CS education for blind users can benefit from studies of
successful blind programmers (e.g., [1]) and a comparatively
large population of students who wish to learn CS. As a
result, researchers have developed and tested a variety of
alternative computer science tools for blind programmers,
including alternative code editors [17,24], new
programming languages [34], and tangible programming
toolkits [37].

In comparison to blindness, very little research has explored
challenges faced by people with cognitive disabilities or
approaches to addressing these challenges. Much of the
existing research focuses largely on people with mild
learning or cognitive disabilities. For example, Powell et al.
[27] explored how dyslexia affects the ability to learn
computer science, and Thompson [38] studied the
programming practices of children with dyslexia.

Almost no research has explored new programming tools
for people with cognitive disabilities. Instead, much of this
work has focused on pedagogical practices such as UDL,

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 2

and the use of existing programming tools. Much of this
research has focused on block-based programming
languages, which offer a simplified, highly visual
environment for experimenting with code [29]. Block-based
languages are often designed for children, although they
may be useful to the general population as well, including
adults with cognitive disabilities. Taylor et al. [31]
introduced block-based programming to elementary school
students with Down Syndrome and found that the students
responded positively to the system’s multimodal input and
output capabilities. Another recent article [36] documented
how one special education teacher has used block-based
programming in their classroom. While our present study
focuses on educational practices using existing technology,
it provides insight into how these technologies may be
adapted to support learners with cognitive disabilities.

2.3 Computer Science and Empowerment

There are many potential benefits to learning about
computer science, and some of these benefits are especially
important for people with disabilities. As noted previously,
computer science skills may lead to employment
opportunities. Buehler et al. [5] explored how people with
cognitive disabilities could learn 3D printing skills and
leverage these skills to create and sell objects, and recently
Microsoft has begun a program to hire neuro-diverse
engineers [30]. Developing computational thinking
practices may lead to general improvements in problem
solving skills [40]. Learning how to work with data and
online media can also support self-expression and social
connection [10, 21]. Finally, developing technical skills can
help empower people to solve their own accessibility
problems [12, 19]. This research is motivated by the belief
that learning computer science can have many potential
benefits.

3 FIELD STUDY

We conducted a series of observations, interviews, and
demo sessions with instructors and students at Code Club
(a pseudonym), a computer science educational program for
adults with cognitive disabilities.

3.1 Field Site: Code Club

Code Club is an educational program within a larger day
program that provides employment and independent living
assistance to people with cognitive disabilities. Code Club
has two sites, both in the United States. Code Club meets
twice per week, for four hours per day, at each of the two
sites. Both sites are managed by a single instructor, who we
refer to as Sally. To the best of our knowledge, Code Club is

the only day program for adults with cognitive disabilities
that includes a computer science course.

Although Code Club and its associated community program
do not provide explicit inclusion criteria, they describe their
client population as “living with developmental disabilities,
autism spectrum disorder, brain injury, mental illness, and
often, accompanying physical challenges.”

We began this research after meeting Sally at a conference
about technology and cognitive disabilities. We discussed
possible research opportunities for approximately six
months, eventually agreeing on a research plan. The first
author visited both of the Code Club sites, observing classes
and conducting interviews with members and staff.

3.2 Participants

We interviewed two instructional staff and ten Code Club
members. The members of Code Club are (mostly) young
adults with cognitive disabilities, ranging in age from 20 to
50. We did not collect individual diagnoses from our
participants as we did not believe this personal information
was relevant to our research goals. However, all members
had been admitted to Code Club (and its parent
organization) due to one or more of the following
diagnoses: Alzheimer’s, autism, brain injury, memory
disorder, developmental disability, or learning disability. All
members experienced challenges with independent living.
The study participants are described in Table 1.

Membership in Code Club was determined in part by the
participant’s ability to speak, read, and write. Sally reported
that all members except one, Teigen, were able to read
independently. Teigen was able to participate in Code Club
with the assistance of a staff member, who read curricular
materials to Teigen and constructed programs with her
input. Another member, Mark, had limited speaking ability
due to dysarthric speech and was unable to type due to a
mobility impairment.

Code Club has two membership tiers. Members begin as
trainees and are promoted to mentor after completing some
initial programming tasks. Mentors are expected to make
themselves available to help trainees and to teach when
Sally is unavailable.

3.3 Recruitment and Consent Process

We received approval from our university’s institutional
review board before contacting any of the Code Club
members. Our initial contact with the Code Club members
was through Sally.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 3

Table 1. Our study participants include instructional staff,
senior students, referred to as mentors, and junior students,
referred to as trainees. All names are pseudonyms chosen
by the authors (S=staff, M=mentor, T=trainee).

Name Age Gender Role Reading/writing Site 1 Site 2
Sally 53 Female Staff ✓ ✓ ✓

Samantha 59 Female Staff ✓ ✓

Monty 24 Male Mentor ✓ ✓

Mark 31 Male Mentor Can read, but
cannot type

✓

Martin 23 Male Mentor ✓ ✓
Micah 27 Male Mentor ✓ ✓

Thomas 22 Male Trainee ✓ ✓

Tim 25 Male Trainee ✓ ✓

Tony 27 Male Trainee ✓ ✓
Tina 22 Female Trainee ✓ ✓

Tiffany 41 Female Trainee ✓ ✓
Teigen 38 Female Trainee Needs assistance ✓

She introduced the program to the members, provided
consent and assent forms, and returned the consent and
assent forms to the research team. Because Sally’s
experience was crucial to understanding how Code Club
works, we considered her a participant in our study; she
had no access to participant data and had no official role on
the research team beyond distributing recruitment
information and consent forms.

Although all participants were over the age of 18, some
participants were not their own legal guardians due to their
disability. We provided consent forms for all participants
who were their own legal guardians. All student members
in Code Club completed an assent form, and their guardians
completed a corresponding consent form.

Our consent forms requested the ability to observe, audio
record, and take notes during class sessions; to interview
participants; and to collect photographs to document the
class. All students and staff members indicated their assent
or consent to participate in the research. Participants were
compensated for their time.

3.4 Data Collection

Our research team collected data at each site over two
weeks. Data collection activities consisted of observations,
interviews, and project demos from Code Club members.

Observation of Code Club Sessions. Our research team
attended two class sessions at each site, participating in a
total of 16 hours of class time. Class sessions included
lecture presentations from Sally, group discussions, and
project time. The structure of the teaching sessions was
similar at both sites, although each site featured a different

set of participants and took place in a different classroom.
The first author observed the class sessions, took notes and
pictures, and video recorded some group discussions.

Interview with Program Director. Our research team
conducted several interviews with Sally, the director and
founder of Code Club. We conducted a formal, 90-minute
interview with Sally and participated in several brief
follow-up conversations. Discussion topics included the
formation of Code Club, her criteria for recruiting members
into Code Club, and her teaching strategies.

Interviews with Members. Our research team conducted one-
on-one and small group interviews with each member.
Interviews occurred either before or after class sessions.
Sally took part in each interview in accordance with the
parent organization’s policies. During Mark’s interview,
Sally helped interpret his responses due to his dysarthric
speech. Interviews ranged between 15 and 90 minutes long
based on the participant’s level of engagement and on
scheduling constraints. Interviews were audio recorded
with the participant’s permission.

Curricular Materials and Project Demos. Sally shared her
curricular materials, including programming tutorials,
project documentation, and course policies, with our
research team. We collected and scanned these materials
and discussed them during our interview with Sally. All
Code Club members demonstrated at least one of their
coding projects for our research team. Demonstration
sessions occurred along with the interview sessions.
Demonstration sessions were audio and video recorded.

3.5 Data Analysis

We analyzed all of the data, including interviews,
observations, and documents, as a single data set. We used
open coding [34] to identify themes in the data. All themes
were initially identified by the first author and revised
collaboratively by the research team.

4 FINDINGS

We collected and analyzed data regarding the structure of
Code Club, curriculum design strategies, accessibility
challenges faced while learning computing, and Code
Club’s peer mentoring model.

4.1 Forming Code Club

We discussed the formation of this program with Sally, the
program director and primary instructor. Before starting
Code Club, Sally worked as a social worker and SQL
database administrator in Code Club’s parent organization.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 4

Sally was then promoted to the role of Director of
Information Technology. As Director of IT, Sally was
responsible for researching and testing new assistive
technologies that might be helpful to the program’s
members. As she worked with members to test these
technologies, Sally began to recognize their expertise in
using and evaluating assistive technologies. Sally decided to
formalize the members’ technical training in an educational
program that became Code Club:

Sally: I thought who better to help with this work than the
people I work with and provide services to? They are the best
testers in the world. They are the ones that are going to use
the technology, who better to test it than somebody who has
insight on how it’s going to work because they are going to
be the users. They are testing it because they are ultimately
going to use it, they have insight about it.

Code Club began with a focus on using and configuring a
variety of technologies, especially smart home and Internet-
of-Things technologies, with the hope that these skills
might lead to employment. The computer science
curriculum began in Code Club’s second year, as Sally felt
that members had mastered the smart home technologies
and were ready to further develop their skills:

Sally: The coding came as an idea because getting more
into SmartThings … you can also program SmartThings. If
we want to get them to the point to do that, we need to step
back and begin teaching them programming.

4.2 Recruiting Club Members

While Sally noted that she was eager to grow Code Club,
she found that identifying and recruiting new members was
one of her most challenging tasks. Although some
individuals sought out membership in Code Club, Sally
usually found potential members by visiting group homes
and participating in community events.

The official criteria for joining Code Club are: interest in
technology, ability to work in a group, motivation,
professional behavior, and an ability to commit to between
six and twelve months of instruction. When asked to
describe her personal criteria for recruiting members, Sally
noted that members should have experience using
technology in their homes, should have an interest in
helping others, and should be able to independently read
large blocks of text. However, some members were able to
enter Code Club without meeting all of these criteria. For
example, Teigen is unable to read independently, but was
selected for her interest in the program, and she
participates with the assistance of a staff member. Overall,
Sally noted that most people who had entered Code Club

were successful, although some early members had left the
program because they found it stressful.

4.3 Curriculum Design Strategies

A major part of Sally’s work involves choosing topics,
finding appropriate teaching materials, and adapting those
materials for use in Code Club. Because her background is
primarily in social work, rather than in computer science,
Sally often needs to teach herself how to use the technology
before she can figure out how to teach it to Code Club.

Choosing Technology. The first step in creating Code Club’s
curriculum is to identify platforms and programming
languages. Sally generally chooses technologies that she
thinks students would be excited to learn about and that are
at an appropriate level of difficulty. When choosing a new
technology, Sally also considers how learning about that
technology could support members’ future educational or
employment goals:

Sally: All the technologies that we choose are based on the
needs of the people we serve.

Initially, the Code Club curriculum focused on physical
computing and assistive technologies. Sally encourages
Code Club members to work on assistive technology
projects as she feels members may have special expertise as
users of assistive technologies. An early project that was
particularly successful was a smart pillow that can be used
by a person with limited speech to communicate with
caregivers at home. The pillow detected the number of taps
on the top of the pillow and, based on the tap count, speaks
out a recorded phrase. The project consists of the pillow,
some sensors from another smart home device, and a
Makey-Makey board (Figure 2).

Figure 2. Code Club members demonstrate a prototype
smart pillow. Sensors on the pillow detect taps and play an
audio message based on the number of taps.

After members demonstrated success in working with
smart home technologies, Sally felt that the group might be
able to handle more complex technical challenges, including

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 5

creating their own computer programs. Sally examined
several programming tools that targeted novice
programmers, including code.org, Python, and Scratch.
Sally eventually decided to teach Scratch, as she felt that its
simple structure and visual nature could be appropriate for
her members, and because she was able to find high-quality
instructional resources online. Sally described Scratch as a
tool that is appropriate for all ages:

Sally: The basis of Scratch is applicable to anybody … it’s
not just being used in school systems anymore. It’s being
used in … senior centers and high schools and everywhere
else so the stigma that it is for kids is long gone.

Choosing Course Materials. In addition to choosing a
technology to teach, Sally noted that she spent a
considerable amount of time searching online for curricular
materials for her students. Sally described the criteria she
used to identify lessons that would be appropriate for Code
Club.

First, instructions must be simple and well-structured. Each
step should be presented simply, with not too much text on
screen, and with simple navigation between pages.
Instructions with too much text or a complex page layout
would be discarded. Sally often chose tutorials that were
intended for K-12 students, as they often feature simple
writing and clear lesson plans.

Second, Sally noted that instructions should use visual aids
when possible. Many Code Club members enjoyed learning
from video tutorials. Instruction pages should have
straightforward visual layouts with clearly marked
headings. These pages should also have example
illustrations and checklists. Sally described one educational
web site that she thought was too visually complicated for
her students:

Sally: Like where do they start? They’re going to be thrown
off by the information on the left side, they’re going to be
thrown off by the information on the right side, they’re lost.
Anything that has … information that can throw you off,
you’re gone!

Finally, the design of the programming language itself helps
to guide the choice of lessons. For example, Scratch uses
colors to distinguish different code elements, which is
helpful for members who are less skilled with reading text.

At the time of our data collection, Code Club was following
using a series of online Scratch1 tutorials. Students began
with a simple project that included heavily scaffolding.

1 scratched.gse.harvard.edu/guide

Scratch’s remix feature proved useful here, as a student
could easily build on an existing project. As a student
developed their programming skills, they moved to more
complex lessons with fewer explicit instructions. Finally,
students moved to their own independent projects.

Members’ projects typically started simply, but could grow
to be quite sophisticated, including multiple types of
audiovisual media along with computational concepts such
as sequential program flow, conditional statements, loops,
and input events.

4.4 Teaching Computer Science Thinking

In addition to learning how to write code, Code Club
members practiced planning programs, debugging code,
and seeking out help.

Learning How to Create a Program. Mentors and trainees
often worked together to plan out programs before writing
them. Members sometimes began by exploring the Scratch
online repository for ideas, looking at other projects’ code
to see how the apps worked. This activity is easy in Scratch,
as anyone can see the source code for any other project.
Some members also wrote out plans for their program
before writing their code. Sally encourages members to
break down a project into smaller steps. For example, when
member Monty decided to make a racing game, he first
worked with Sally to write down the program structure on
the whiteboard (Figure 3).

Debugging and Getting Help. Code Club members used
various strategies to identify and fix problems in their code.
Most commonly, members would first ask another member
for help. If the members were unable to solve the problem
themselves, they might then ask Sally for help. Sally
emphasized the importance of teaching the members to
think through a problem, asking probing questions about
the problem and encouraging them to break down the
problem into smaller steps.

Figure 3. Plans for a driving game are sketched out on the
whiteboard to help a student create the program.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 6

In some cases, Sally would ask a member to present their
problem to the entire group. The member would then show
their code on a large shared display and describe their
problem to the group. This group conversation helped all
members to learn to identify and solve common problems,
while the member who was stuck often figured out what
the problem was as they were explaining it to the group.
This form of “rubber duck debugging” [11] was found to be
helpful for many Code Club members.

4.5 Accessibility-Related Challenges

Members of Code Club often experienced typical
programming problems during their work. For example,
Monty demonstrated a Scratch animation in which two fish
swam through an aquarium. Initially, one fish moved in the
wrong direction. After talking through the problem with
Sally and Mark, Monty realized that the fish sprite was
accidentally rotated 90 degrees. In addition to these
problems, Code Club members experienced some
challenges that were less typical.

Reading and Understanding Code. Some Code Club members
experienced difficulty in reading and understanding the
structure of code blocks. Although Scratch’s use of color to
identify blocks was usually considered helpful, complex
code structures with multiple blocks could still be difficult
to understand.

While the color-coding of blocks was generally helpful,
members sometimes became reliant on them, which could
limit their ability to understand the code itself. Sally noticed
this problem and began testing members by printing out
lessons in black-and-white so that they would have to read
the code rather than relying on the color of the blocks.

Gaps in Programming Knowledge. Code Club members
typically followed a sequence of tutorial documents selected
by Sally. In completing these tutorials, members practiced
using language features such as sequential program flow,
conditional statements, and loops. However, sometimes the
lessons would skip or gloss over important concepts such as
variables, and Code Club members tended to have little or
no knowledge of how to use these features, causing them to
get stuck when they attempted to create more complex
programs. Because they were used to learning from Sally’s
hand-picked lessons, members were often unable to seek
out help online, and instead required in-person help from
Sally or a mentor.

Following Tutorials. Code Club members used both written
and video tutorials when learning Scratch. Videos, GIFs and
images could be especially useful for those members who
were less confident readers. However, several members

experienced a particular challenge when following along
with image-heavy tutorials: they confused the tutorial
window and the code editor window. For example, Figure 4
shows a Scratch code editor window with a tutorial open
beside it. Members would occasionally confuse these two
windows, accidentally clicking on images of code in the
tutorial window rather than the “real” code blocks in their
editor. Sally considered this a common problem:

Sally: Sometimes they don't realize you go all the way over
to the left to click, and the on-screen tutorials are sometimes
… too hard for somebody to do because they are trying to
click on what they are being demonstrated on, so when it
says create a new sprite and they show the picture of the
new sprite, they are clicking on what it’s showing them
versus going to the left side to click it.

To address this problem, Sally often provided a member’s
early lessons as a paper print-out, rather than pointing
them toward an online tutorial.

Figure 4. Scratch code editor next to a tutorial. Tutorial
images were sometimes mistaken for the code editor itself.

Time and Project Management. Although Sally attempted to
find projects that could be completed within the Code Club
meeting schedule, members sometimes struggled to
complete their projects. When members become tired or
frustrated, they sometimes sit quietly instead of working, as
they are not always able to leave the group meeting on
their own. These problems could sometimes be addressed
by helping a member through a difficult task, or by giving
them a new project to work on.

Problems with Assistive Technology. Some Code Club
members had other disabilities and required the use of
assistive technologies. These technologies sometimes
caused problems when programming. For example, Mark
had recently begun using a head mouse to control his on-
screen pointer. Initially, Mark struggled to use the head
mouse and asked the staff several times to reconfigure its
settings. After finally finding the appropriate configuration,
the head mouse’s battery died, leaving Mark unable to use
the computer himself. Fortunately, staff member Samantha
was available, so Mark was able to dictate his code to her,

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 7

although he was unable to complete the project
independently as he had originally hoped.

Because Code Club computers were shared between
members, one member’s settings sometimes interfered with
another member’s work. In one session, Tiffany attempted
to open Scratch but found that her mouse was configured
such that the cursor moved in the opposite direction from
the mouse. She expressed frustration about the situation but
could not explain the problem and thus could not request
help. After some time, Sally came over to see her screen and
helped her correct the mouse settings.

4.6 Collaborative Work and Peer Mentoring

Although Code Club’s peer mentoring model was initially
developed in part due to the lack of instructional staff, it has
become central to how members see the program. Code
Club members work collaboratively in a number of ways.

Mentoring and Teaching. After completing some
introductory programming tasks, members are promoted
from trainee to mentor. Mentors are expected to help
trainees with their technical problems; because mentors
have completed the trainee phase, they often recognize the
trainee’s problems and know how to solve them. Mentors
also run class sessions once per week while Sally is leading
class at the other site.

Several members expressed pride in their role as mentor
and teacher. During his interview, Monty shared a prepared
statement about his role as a teacher:

Monty: It’s that the more I get the people that I teach
involved, the more they’re willing to learn. The more I ask
them questions and get them to understand, the more things
they do on the computer gets them more involved.

Sally considers this peer mentoring to be a core part of how
Code Club members learn:

Sally: The more they [teach], the more they learn it. That's
the way I learn. The way I've seen most people learn best, is
if you can teach it, you know it. The more they're teaching
it, the more they know it.

Different mentors adopted different specialties. For
example, Martin was especially interested in learning about
different types of assistive technologies and took an active
role in researching new technologies.

Helping People Like Themselves. Some mentors expressed
that they found it rewarding to help other individuals with
cognitive disabilities. When discussing his teaching work,
Monty expressed pride in his ability to help others:

Monty: For me, it’s a great experience to work with people
who have the same disabilities as me, well, not the same but
almost the same, and be able to teach them something that
they have never done before.

When working with trainees who had similar disabilities,
some mentors noted that they felt that they had particular
insights into the challenges the trainees experienced.

Sometimes members were able to work with each other
when they had difficulty requesting help from an
instructor. Martin and Micah, who are both infrequent
communicators, typically worked alone and rarely asked for
help. However, during one project, Martin became stuck
and asked Micah for help. Micah offered his help, and the
two worked together for the remainder of the project.

Dividing Labor. In some cases, a member was unable to
complete a task, either due to a lack of understanding or
due to an accessibility barrier. In these cases, group
members would sometimes break down a task in order to
solve a problem together. For example, when Mark’s head
mouse stopped working, Samantha was able to input his
commands into the computer. In another case, Mark,
Monty, and Sally were working together to build a physical
computing project involving multiple sensors. Because of
Mark’s limited mobility, he focused on writing the program
code using a tablet, while Monty placed the physical
components and Sally connected the wiring. Although this
project would have been a challenge for any one member,
the group was able to complete the project by working
together, each member choosing the appropriate task for
their abilities in a form of collaborative accessibility [3].

Supporting the Community. To help Code Club members
gain practical knowledge, Sally incorporated a public
service model into the Code Club curriculum. In this
program, members go to group homes or other community
facilities and set up smart home technology. Members
participate in several community technology sessions,
gaining independence with each subsequent visit, first
following instructions from Sally, then providing
instructions to Sally, and finally working alone. Currently,
most members are still in the first stage; only Monty and
Mark have completed an independent project, which was
setting up a Wi-Fi-powered, color-changing light bulb in a
classroom of one of the day programs.

4.7 Outcomes Beyond the Classroom

Most of our conversations with Code Club members
focused on their programming activities within the class.
However, members also discussed how participating in
Code Club has impacted their lives outside of class, and

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 8

how their computer science work helped to support their
long-term goals.

Career Goals. One of Sally’s primary goals in creating Code
Club was to prepare members for jobs in which they could
use their technical skills. She hopes that members will
“learn … to be able to truly code and get jobs in the fields
they choose.” Members often expressed interest in technical
careers. When asked about his career goals, Monty said:

Monty: I hope that one day I can have a job with something
like this, that’s kind of my intention, look forward to a job
with technology and that kind of stuff … Honestly [my
dream job] would be to work at Google.

Since Code Club began, one member graduated from the
program and accepted a job at the local library, where he
works on the library’s social media outreach activities.

Helping Others. Several members talked about how they
had used their technical skills to solve problems in their
everyday lives. Tina described how she helped her mother
fix a problem with her mobile phone: the phone was turned
off and her mother did not know how to turn it back on.
Because of her experiences with technology, Tina knew to
hold down the power button to turn it back on:

Tina: It wouldn’t come on, just had to hold the power
button and turn [it] on.

Both Mark and Monty described how they were able to
answer technical questions from friends and colleagues in
their group home. Mark described helping friends with
mobile applications and smart home devices. Monty
mentioned that practicing his teaching skills in Code Club
helped him teach staff members in his group home:

Monty: It’s really interesting that I can teach [Code Club]
and be able to teach my staff. If they don't know how to set
up something, I can help.

Developing Social Skills. Sally noted that an often unstated
but important goal of Code Club is to promote social skills
such as leadership, teamwork, timeliness, and self-
confidence. Several members discussed how participating in
Code Club helped them develop new skills. For example,
Monty described how Code Club helped him to discover his
fondness for teaching:

Monty: I love to teach and show my knowledge about
technology and give it to other people.

While describing what he has learned in Code Club, Monty
also noted that learning to program led him to a new way
of thinking:

Monty: Programming for me is kind of like … it broadens
my mind a little bit. It kind of makes me smart, I don’t
know, a little smarter than I originally was. The more I
learn, the more I can teach other people.

Code Club has motivated members to feel more confident
about their own abilities. When Martin first joined Code
Club, he planned on finishing the course and going back to
live with his parents. After participating in Code Club for a
year, Martin is now committed to finding a job and
becoming more independent.

Finally, participating in Code Club has also helped some
members practice their social skills. When Tina first joined
the group, she would cry if the instructors spoke to her.
After four months in Code Club, Tina is now able to speak
to her peers and agreed to participate in this research study.
Micah, who was shy and noncommunicative when he
began the program, now frequently helps his peers with
their projects.

5 DISCUSSION

Our initial inquiry into Code Club was motivated by an
interest in understanding whether it was successful and, if
so, how it was able to be successful. To the best of our
knowledge, Code Club is the only program of its type in
North America. In attempting to understand Code Club’s
success, several factors stood out: the program director’s
combined expertise in social work and technology, the
focus on developing technical and professional skills for a
future career, and the comprehensive use of peer
mentoring. While Code Club is a unique organization, these
qualities could certainly be passed on to other programs,
and we hope that our exploration of what makes Code Club
work can lead to the development of similar programs in
the future.

In studying Code Club and its members, we also sought to
identify any unique accessibility challenges experienced by
members of this community. We found that Code Club
members experienced many of the challenges that anyone
would experience while learning technology. When
members did encounter an unusual challenge, such as the
confusion between the code editor and tutorial document,
the mentors and staff were often able to find a solution.
Documenting these challenges and workarounds may lead
to new tools and curricula to better support people with
cognitive disabilities in learning computer science.

Finally, we sought to understand what types of incentives
might best motivate adults with cognitive disabilities to
learn computer science. As with many computer science

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 9

students, Code Club members were often motivated to
develop their technical skills in order to seek a career in a
computing-related field. However, we also found that
members were motivated to develop new assistive
technologies and to teach and support other people with
disabilities. Members were also motivated by the belief that
participating in their program could lead to improved social
and professional skills, and several members reported
experiencing real improvements in these areas.
Understanding these motivations may support the
development of educational tools that can help this
population achieve their goals.

6 IMPLICATIONS FOR INCLUSIVE EDUCATION

Code Club serves as a successful example of engaging
people with cognitive disabilities in computer science.
Many Code Club practices reflect Universal Design for
Learning (UDL) principles such as presenting information
in multiple modalities, breaking down problems into
discrete steps, and facilitating peer learning. However, Code
Club’s practices evolved through trial and error, and
therefore may provide insights beyond the maxims of UDL.
Here we provide an overview of successful strategies
articulated by Code Club’s educational team, as well as
insights from our experience as researchers within this
community.

6.1 Code Club’s Stated Principles

While Code Club’s educational practices are complex and
are continually evolving, a few lessons repeatedly surfaced
throughout our study:

Provide simple, well-structured, and modular activities.
Activities should be presented as a series of clearly-defined
steps so that the next action is always clear. Modular
activities should support work that occurs over multiple
sessions with minimal effort needed to jump back in.
Adding checklists and question prompts between steps can
help to keep learners on track and can make it easier for a
teacher or peer to help when a student gets stuck.

Use carefully designed visual aids. Educational materials
should use color and visual layout to convey information.
Clear visual design should be applied across all learning
materials, including written instructions, the code editor,
and even the programming language itself. Provide clear
differences between the appearances of software tools and
tutorials or other documents that may depict those tools.

Support peer teaching and learning. Peer mentoring can
reduce the burden on teaching staff, but also serves as a

powerful motivator for students to advance through the
program. Providing explicit stages of advancement from
trainee to mentor may help reinforce the responsibilities of
mentorship.

6.2 Insights from Our Research

Beyond the explicitly stated principles behind Code Club’s
educational program, we note these additional practices
that have helped to support Code Club’s success, and that
may help to support similar programs in the future:

Anticipate multiple disabilities and assistive technologies.
Code Club members used a diverse set of assistive
technologies that sometimes interfered with the system
software or with other members’ assistive technologies.
Test all educational materials with a representative set of
assistive technologies. On shared devices, provide methods
for easily changing the user profile.

Support teams with complementary abilities. Code Club
members often enjoyed working together, and sometimes
used groupwork to overcome an individual’s accessibility
challenges. Provide opportunities for learners of different
abilities to work together. Design activities that can be
broken down into different types of work, such as planning,
writing code, and assembling hardware.

Encourage diverse goals and outcomes. Code Club members
were motivated by a variety of goals: getting a job, helping
their friends, giving back to their community, and
participating in social activities. Within a diverse group of
learners, not all goals may be achievable or desirable to
everyone. Encourage students to articulate their goals and
provide structures for tracking progress towards them.

7 FUTURE WORK

We are excited to continue our collaboration with Code
Club, both to explore how to support the existing program
and its members as well as to increase our understanding of
how to create and support similar programs in the future.

One area of future research is to explore how members of
this community can transfer from Scratch and Makey-
Makey to mainstream programming languages. Supporting
knowledge transfer between education-focused tools and
mainstream programming languages presents a number of
challenges, and these challenges will likely play out
differently for Code Club members than for the general
population. A related challenge is in identifying the
technical skills developed by Code Club members and
mapping them to possible career paths.

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 10

A second area of research is in developing software tools to
overcome some of the accessibility challenges encountered
by members of this community when programming. For
example, we could design a software development
environment that provide clear visual structure, supporting
learners who have difficulty with extensive text or complex
code structure. We could also explore how tutorials could
provide clear, multimodal explanations and instructions.

A third area of research is to consider how these
accessibility challenges vary between individuals, and to
explore adaptive systems that can build a profile of a user’s
abilities and provide personalized support.

Finally, as peer mentoring is a central part of Code Club, we
may explore technologies to support the mentoring process,
such as by providing tools for peers to share code, debug
each other’s programs, or collaborate over a distance.

8 CONCLUSION

Studying computer science skills is seen by many as a way
to empower individuals, providing them with a potential
career path and supporting development in computational
thinking and other areas. Despite the great interest in
introducing young people to computer science, people with
disabilities are still excluded from many of the benefits of
computer science education. This exclusion is especially
severe for people with cognitive disabilities, as few
resources exist for including these individuals in computer
science education. In this work, we have examined one
organization that has successfully tackled many of these
problems and shown that it is possible to adapt computer
science curricula to support the goals and abilities of young
people with cognitive disabilities. Understanding the
challenges encountered by this group, and how they have
been overcome, may lead to more inclusive approaches to
teaching computer science.

ACKNOWLEDGMENTS
We thank our participants for taking part in our study. We
also thank Erin Buehler, Jed Brubaker, Clayton Lewis, and
Amy Voida for giving us valuable feedback. This work was
supported by the National Science Foundation under grants
IIS-1619384 and IIS-1652907. Any opinions, findings,
conclusions or recommendations expressed in this work are
those of the authors and do not necessarily reflect those of
the National Science Foundation.

REFERENCES
[1] Khaled Albusays and Stephanie Ludi. 2016. Eliciting Programming

Challenges Faced by Developers with Visual Impairments:
Exploratory Study. In Proceedings of the 9th International Workshop

on Cooperative and Human Aspects of Software Engineering
(CHASE ’16), 82–85. DOI: https://doi.org/10.1145/2897586.2897616

[2] Jeffrey P. Bigham, Maxwell B. Aller, Jeremy T. Brudvik, Jessica O.
Leung, Lindsay A. Yazzolino, and Richard E. Ladner. 2008. Inspiring
blind high school students to pursue computer science with instant
messaging chatbots. In Proceedings of the 39th SIGCSE technical
symposium on Computer science education (SIGCSE '08). ACM, New
York, NY, USA, 449-453. DOI: https://doi.org/10.1145/1352135.1352287

[3] Stacy M. Branham and Shaun K. Kane. 2015. Collaborative
Accessibility: How Blind and Sighted Companions Co-Create
Accessible Home Spaces. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (CHI '15).
ACM, New York, NY, USA, 2373-2382. DOI:
https://doi.org/10.1145/2702123.2702511

[4] Karen Brennan, & Mitchel Resnick. 2012. New frameworks for
studying and assessing the development of computational thinking.
In Proceedings of the 2012 annual meeting of the American
Educational Research Association, Vancouver, Canada (pp. 1-25).

[5] Erin Buehler, William Easley, Samantha McDonald, Niara Comrie,
and Amy Hurst. 2015. Inclusion and Education: 3D Printing for
Integrated Classrooms. In Proceedings of the 17th International ACM
SIGACCESS Conference on Computers & Accessibility (ASSETS '15).
ACM, New York, NY, USA, 281-290. DOI:
https://doi.org/10.1145/2700648.2809844

[6] Bureau of Labor Statistics, U.S. Department of Labor, Occupational
outlook handbook, Computer and Information Research Scientists.
Retrieved April 16 2018 from https://www.bls.gov/ooh/computer-
and-information-technology/computer-and-information-research-
scientists.htm

[7] Sheryl Burgstahler and Richard Ladner. 2006. An alliance to increase
the participation of individuals with disabilities in computing
careers. SIGACCESS Access. Comput. 85 (June 2006), 3-9.
DOI=http://dx.doi.org/10.1145/1166118.1166119

[8] Franklin, D., Hill, C., Dwyer, H., Hansen, A., Iveland, A., and Harlow,
D. Initialization in Scratch: Seeking Knowledge Transfer, SIGCSE,
2016.

[9] Gerhard Fischer. 2011. Understanding, fostering, and supporting
cultures of participation. interactions 18, 3 (May 2011), 42-53. DOI:
https://doi.org/10.1145/1962438.1962450

[10] Andrea Forte and Mark Guzdial. 2004. Computers for
Communication, Not Calculation: Media as a Motivation and Context
for Learning. In Proceedings of the Proceedings of the 37th Annual
Hawaii International Conference on System Sciences (HICSS'04) -
Track 4 - Volume 4 (HICSS '04), Vol. 4. IEEE Computer Society,
Washington, DC, USA, 40096.1-.

[11] Andrew Hunt, & David Thomas. 2000. The pragmatic programmer:
from journeyman to master. Addison-Wesley Professional.

[12] Amy Hurst and Jasmine Tobias. 2011. Empowering individuals with
do-it-yourself assistive technology. In The proceedings of the 13th
international ACM SIGACCESS conference on Computers and
accessibility (ASSETS '11). ACM, New York, NY, USA, 11-18. DOI:
https://doi.org/10.1145/2049536.2049541

[13] Maya Israel, Quentin M. Wherfel, Jamie Pearson, Saadeddine Shehab,
& Tanya Tapia. 2015. Empowering K–12 students with disabilities to
learn computational thinking and computer
programming. TEACHING Exceptional Children, 48(1), 45-53.

[14] Maya Israel, Jaime N. Pearson, Tanya Tapia, Quentin M. Wherfel, &
George Reese. 2015. Supporting all learners in school-wide
computational thinking: A cross-case qualitative analysis. Computers
& Education, 82, 263-279.

[15] Yasmin B. Kafai, Quinn Burke, & Mitchel Resnick. 2014. Connected
code: Why children need to learn programming. Mit Press.

[16] Shaun K. Kane and Jeffrey P. Bigham. 2014. Tracking @stemxcomet:
teaching programming to blind students via 3D printing, crisis

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 11

https://doi.org/10.1145/1352135.1352287
https://doi.org/10.1145/2702123.2702511
https://www.bls.gov/ooh/computer-and-information-technology/computer-and-information-research-scientists.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-and-information-research-scientists.htm
https://www.bls.gov/ooh/computer-and-information-technology/computer-and-information-research-scientists.htm
https://doi.org/10.1145/1962438.1962450

management, and twitter. In Proceedings of the 45th ACM technical
symposium on Computer science education (SIGCSE '14). ACM, New
York, NY, USA, 247-252. DOI:
http://dx.doi.org/10.1145/2538862.2538975

[17] Varsha Koushik and Clayton Lewis. 2016. An Accessible Blocks
Language: Work in Progress. In Proceedings of the 18th International
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS
’16), 317–318. DOI: https://doi.org/10.1145/2982142.2982150

[18] Richard E. Ladner and Andreas Stefik. 2017. AccessCSforall: making
computer science accessible to K-12 students in the United
States. SIGACCESS Access. Comput. 118 (July 2017), 3-8. DOI:
https://doi.org/10.1145/3124144.3124145

[19] Richard Ladner. 2014. Design for user empowerment. In CHI '14
Extended Abstracts on Human Factors in Computing Systems (CHI
EA '14). ACM, New York, NY, USA, 5-6. DOI:
https://doi.org/10.1145/2559206.2580090

[20] Richard E. Ladner and Maya Israel. 2016. "For all" in "computer
science for all". Commun. ACM 59, 9 (August 2016), 26-28. DOI:
https://doi.org/10.1145/2971329

[21] Amanda Lazar, Raymundo Cornejo, Caroline Edasis, and Anne Marie
Piper. 2016. Designing for the Third Hand: Empowering Older Adults
with Cognitive Impairment through Creating and Sharing.
In Proceedings of the 2016 ACM Conference on Designing Interactive
Systems (DIS '16). ACM, New York, NY, USA, 1047-1058. DOI:
https://doi.org/10.1145/2901790.2901854

[22] Clayton Lewis. 2005. HCI for people with cognitive
disabilities. SIGACCESS Access. Comput. 83 (September 2005), 12-17.
DOI=http://dx.doi.org/10.1145/1102187.1102190

[23] Matthew T. Marino, Chad M. Gotch, Maya Israel, Eleazar Vasquez III,
James D. Basham, & Kathleen Becht. 2014. UDL in the middle school
science classroom: Can video games and alternative text heighten
engagement and learning for students with learning
disabilities?. Learning Disability Quarterly, 37(2), 87-99.

[24] Lauren R. Milne. 2017. Blocks4All: making block programming
languages accessible for blind children. ACM SIGACCESS Accessibility
and Computing, 117: 26–29.

[25] National Science Foundation. 2009. A week to focus on computer
science education (Press Release 09-234).

[26] Hadi Partovi. 2014. Transforming US education with computer
science. In Proceedings of the 45th ACM technical symposium on
Computer science education (SIGCSE '14). ACM, New York, NY, USA,
5-6. DOI: http://dx.doi.org/10.1145/2538862.2554793

[27] Norman Powell, David Moore, John Gray, Janet Finlay, & John
Reaney. 2004. Dyslexia and learning computer programming.

[28] Meg J. Ray, Maya Israel, Chung eun Lee, and Virginie Do. 2018. A
Cross-Case Analysis of Instructional Strategies to Support
Participation of K-8 Students with Disabilities in CS for All.
In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education (SIGCSE '18). ACM, New York, NY, USA, 900-905.
DOI: https://doi.org/10.1145/3159450.3159482

[29] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric
Rosenbaum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009.
Scratch: programming for all. Commun. ACM 52, 11 (November
2009), 60-67. DOI: https://doi.org/10.1145/1592761.1592779

[30] Meredith Ringel Morris, Andrew Begel, and Ben Wiedermann. 2015.
Understanding the Challenges Faced by Neurodiverse Software
Engineering Employees: Towards a More Inclusive and Productive
Technical Workforce. In Proceedings of the 17th International ACM
SIGACCESS Conference on Computers & Accessibility (ASSETS '15).
ACM, New York, NY, USA, 173-184. DOI:
https://doi.org/10.1145/2700648.2809841

[31] Daniel Rezac. 2018. Coding for Special Ed? It’s Real and It’s Helping.
Retrieved April 16 2018 from
https://www.tynker.com/blog/articles/ideas-and-tips/coding-special-
populations/

[32] David H. Rose, & Anne Meyer. 2002. Teaching every student in the
digital age: Universal design for learning. Association for Supervision
and Curriculum Development, 1703 N. Beauregard St., Alexandria,
VA 22311-1714 (Product no. 101042: $22.95 ASCD members; $26.95
nonmembers).

[33] Snodgrass, Melinda. R., Israel, Maya., & Reese, George. C. (2016).
Instructional supports for students with disabilities in K-5 computing:
Findings from a cross-case analysis. Computers & Education, 100, 1-17.

[34] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation
into Programming Language Syntax. Trans. Comput. Educ. 13, 4,
Article 19 (November 2013), 40 pages.
DOI=http://dx.doi.org/10.1145/2534973

[35] Anselm Strauss, & Juliet M. Corbin. 1990. Basics of qualitative
research: Grounded theory procedures and techniques. Sage
Publications, Inc.

[36] Matthew S. Taylor, Eleazar Vasquez, & Claire Donehower. 2017.
Computer programming with early elementary students with Down
syndrome. Journal of Special Education Technology, 32(3), 149-159.

[37] Anja Thieme, Cecily Morrison, Nicolas Villar, Martin Grayson, and
Siân Lindley. 2017. Enabling Collaboration in Learning Computer
Programing Inclusive of Children with Vision Impairments.
In Proceedings of the 2017 Conference on Designing Interactive
Systems (DIS '17). ACM, New York, NY, USA, 739-752. DOI:
https://doi.org/10.1145/3064663.3064689

[38] Rob Thompson. 2016. Teaching coding to learning-disabled children
with Kokopelli's World. In Visual Languages and Human-Centric
Computing (VL/HCC), 2016 IEEE Symposium on (pp. 258-259). IEEE.

[39] David Weintrop and Uri Wilensky. 2015. Using Commutative
Assessments to Compare Conceptual Understanding in Blocks-based
and Text-based Programs. In Proceedings of the eleventh annual
International Conference on International Computing Education
Research (ICER '15). ACM, New York, NY, USA, 101-110.

[40] Jeannette M. Wing. 2006. Computational thinking. Commun.
ACM 49, 3 (March 2006), 33-35. DOI:
https://doi.org/10.1145/1118178.1118215

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 514 Page 12

http://dx.doi.org/10.1145/2538862.2538975
https://doi.org/10.1145/3124144.3124145
https://doi.org/10.1145/2971329

